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Abstract Growing societal water demands and decreasing water supplies are straining the water available
for communities in many basins. Once water supplies have been fully allocated and developing new water
supplies is infeasible, the best option to meet growing water demands is often to reallocate water from rural
agricultural water uses. Yet, the dynamics and implications of these rural‐to‐urban water transfers are poorly
understood. Here, we integrate an agent‐based model with an input‐output model to capture the behavior of
individual irrigators and examine how their water transfer decisions propagate through the broader rural
economy and shape social dynamics. As a demonstration of our model, the rural community represents Alamosa
County while the city represents the city of Denver, both located in Colorado, Unites States. We find that the
greatest long‐term decline in crop water use corresponds with higher city growth rates while the greatest short‐
term decline corresponds with larger farmer discount rates. As farmers sell their water rights to the City,
economic activity from the crop production sector declines, causing unemployment in the crop production
sector to increase and demand from the service sectors to decrease, which results in output declining in these
economic sectors as well. Thus, a negative impact on the agricultural sector will cause some negative impact on
other economic sectors, such as professional, health care, and recreational services. This research brings new
insights that can be used to evaluate the socio‐economic impacts of water transfers and shape policy to minimize
potential negative externalities associated with water transfers.

Plain Language Summary Water scarcity has become a pressing issue as declining water supplies
are increasingly unable to meet cities' growing water demands. To meet these growing demands, cities can
transfer water supplies from rural communities by purchasing farmers' water rights. While these transfers meet
urban water needs, it is not well understood how these water transfers impact the economy of the rural
community. In this paper, we present a modeling framework that simulates rural‐to‐urban water transfers and
quantifies the economic impact of this transfer on the rural community. In this demonstration of our model, the
rural community represents Alamosa County while the city represents the city of Denver, both located in
Colorado, Unites States. We find water transfers are driven primarily by farmer behavior in the short term, while
the volume of long‐term water transfers is more strongly determined by the urban population growth rates.
When farmers sell their water rights to the city, they stop producing crops and no longer require additional
workers. As a result, we show that unemployment rises and economic output decreases in the rural community
across various sectors. With this modeling framework, we can identify strategies to better manage the economic
impacts caused by rural‐to‐urban water transfers.

1. Introduction
Around the world, growing societal water demands and decreasing water supplies are straining the water available
for both ecosystems and communities (Jury &Vaux, 2007). Reallocating water from existing users to new users is
increasingly seen as the most viable option to meet new water demands in many areas (Marston & Cai, 2016).
However, competition for limited water resources between growing cities and rural communities that utilize
irrigated agriculture has often resulted in conflict between these urban and rural areas (Garrick et al., 2019;
Marston & Cai, 2016). In Yemen, groundwater wells historically used by farmers were depleted in an attempt to
meet the growing water needs of the city of Ta'iz (Riaz, 2002). In India, the transfer of water from agricultural
regions to rapidly growing cities, such as Mumbai and Chennai, has led to political contestation and legal
challenges (Punjabi & Johnson, 2019). Despite the social and political implications, rural‐to‐urban water transfers
are likely to remain important in the future (Hommes et al., 2019), especially in places like the western United
States (US) where water supplies have already been fully allocated in many basins and it is physically, politically,
legally, and/or economically infeasible to develop new supplies. In the western US, irrigation for agriculture uses
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six times the water that is used by cities for public supply (Dieter et al., 2018). The cost paid by farmers to access
irrigation waters and the economic value they derive from them are typically a fraction of the cost and value
derived from water by urban municipalities (USDA, 2018a, 2018b, 2018c; Womble & Hanemann, 2020). This
discrepancy in water use and value between agricultural communities and urban areas is why transferring water
from water abundant farmlands to affluent urban areas is expected to increase in the western US over the coming
decades (Garrick et al., 2019). Therefore, it is essential to understand the dynamics of water transferred from a
rural to an urban community over time and the economic impacts of these transfers on the rural community in
order to avoid the socio‐political conflicts that have resulted from rural‐to‐urban water transfers around the world.

Under the Prior Appropriation Doctrine, which sets the allocation of water in much of the western US, water
rights are not tied to land ownership; instead, the priority date of the water right determines a water user's priority
to use available water (NSGLC, 2021). Many of the oldest (i.e., highest priority) and largest water rights are held
by agricultural water users. As a result, there are several reports of urban areas in the western US buying up nearby
farmer water rights and transferring these waters out of the rural community to meet increasing urban water
demands, which is colloquially called “buy and dry” since these water transfers often lead to desiccated farmlands
(Garrick et al., 2019). The Owens Valley water transfer to Southern California and the Crowley County water
transfer to Aurora and Colorado Springs exemplify the “buy and dry” approach cities typically employ to secure
water supplies (Libecap, 2009; Taylor et al., 1993). The rural farming community that exported the water is often
left worse off due to loss of water, jobs, productivity, and, eventually, population (McColl, 2016; Petit
et al., 2017). While the immediate outcome to the “buy and dry” approach is the desiccation of farmland, the
secondary outcomes, such as broader unemployment and a decline in the rural economy, are not well understood
and represent a gap in knowledge. In this study, we use a novel integrated modeling approach to address this
knowledge gap, the socio‐economic impacts caused by rural‐to‐urban water transfers.

Previous studies have applied various “bottom‐up” modeling techniques, including optimization models (Howitt
et al., 2012), multi‐agent simulation (MAS) models (Berger et al., 2007; Klassert et al., 2023), and agent‐based
models (ABM) (Du et al., 2022; Matinju et al., 2023), to represent rural‐urban water markets around the world.
Specifically, these studies represent rural‐urban water markets in California (Howitt et al., 2012), Chile (Berger
et al., 2007), Jordan (Klassert et al., 2023), Texas (Du et al., 2022), and Iran (Matinju et al., 2023). These modeling
approaches assess heterogeneous, micro‐level information and define variables connected with local‐scale actors
but do not capture broader system dynamics (Eicken et al., 2021). To address this issue, these “bottom‐up” models
have been linked to biophysical models that constrain or influence micro‐level decision‐making (e.g., Du
et al., 2022; Klassert et al., 2023). However, a modeling framework has not yet been developed to capture the
interactions of rural‐urban water markets and the economy of rural communities within the context of rural‐to‐
urban water transfers. Previous research on water transfers has utilized policy, economic, or engineering ap-
proaches that only address one aspect of the challenge. The complex social, economic, and environmental im-
plications of water transfers must all be considered, and solutions must be based on a comprehensive
understanding of the human‐water system (Marston & Cai, 2016).

In this study, we present an integrative modeling framework that captures the aggregated effects of micro‐level
farmer decisions on the rural economic system, and the influence of these meso‐level economic impacts on in-
dividual decisions. We apply this modeling framework within the unique context of rural‐urban water transfers.
There have been several studies that integrate micro‐level and meso‐level economics and many of these studies
have been applied to agricultural markets to represent the economy‐wide impacts of farm‐level decisions (e.g.,
Britz, 2008; Britz & Hertel, 2011; Parrado et al., 2020; Perez‐Blanco & Standardi, 2019). In our framework, we
chose to represent the rural economy using an economic input‐output (IO) model, which has previously been
integrated with micro‐economic models within an agricultural context (Perez‐Blanco et al., 2018). An IOmodel is
a “top‐down” model that can be easily parameterized using accessible, real‐world data available at the meso‐level.
Furthermore, the IO model can uniquely capture the interdependencies of different entities through their eco-
nomic interactions and it can also represent the resource requirements for each economic sector as physical
quantities, including labor, land, and water. To represent the individual farmers in our framework, we used an
agent‐based model (ABM), which is a “bottom‐up” modeling approach that has been applied in other studies to
represent farm‐level decisions (e.g., Berger, 2001; Lin et al., 2024; Ng et al., 2011). ABMs can capture the
complex behavior of different autonomous actors with finer granularity, parameterized following economic or
behavioral theory. Thus, ABMs can capture the heterogeneous decision‐making of individual agents. By coupling
these modeling approaches in our integrative modeling framework, we can trace individual farmer decisions
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through to community‐level economic impacts in a way that has not been captured in other model representations
of rural‐urban water markets. While a handful of studies have integrated ABM and IO models for various ap-
plications, including carbon emissions (Andrade et al., 2010) and industrial symbiosis (Yazan & Fraccas-
cia, 2020), the integration of an ABM with an IO model has yet to be utilized to examine the socio‐economic
impacts of water transfers from individual farmers, which is the novel contribution of this study.

In our modeling framework, we consider four types of entities: (a) farmers/water right holders (water exporters),
(b) city (water importer), (c) rural economy, and (d) rural community. The farmers and the city are agents that are
actively selling and buying water rights. Specifically, the city is a single agent i.e. buying and retiring the use of
water rights for the farmer agents, resulting in a permanent transfer of water rights. The rural economy and
community represent the environments in which these activities are occurring, which passively influence and can
be impacted by the farmers' decisions. An economic IO model is needed to represent the rural economy because it
captures the interdependencies of different economic sectors and the impacts of changes in one sector on to other
sectors. The IOmodel also provides physical representations of labor, land, and water, which are the only physical
representations within the modeling framework. Specifically, it represents the water used by each sector along
with water available to be used by the crop production sector as physical quantities. Our representation of rural‐to‐
urban water transfers is unique in that it captures both the micro‐level, heterogeneous decisions of farmers and the
meso‐level considerations and impacts of the urban and rural communities, which are critical to properly
represent the complex dynamics involved with water transfers. We can also identify the socio‐economic con-
ditions within the urban and rural communities that ultimately lead to broader unemployment and economic
decline within the rural community, which is currently a knowledge gap in the literature.

In this study, we have developed an integrated ABM‐IO framework to represent the behavior of individual
farmers in a rural community, the socio‐economic conditions that influence their decision to sell their water rights
to an urban community, and the broader impacts of rural‐urban water transfers. Specifically, we can capture how
changes in crop production indirectly affect unemployment and economic output in other sectors of the rural
economy. Our model is parameterized using data from Alamosa County, Colorado, which is used as a repre-
sentative study area to ground our analysis. To demonstrate the novel capabilities and sensitivities of this inte-
grated ABM‐IO framework, which is the key contribution of this study, we designed illustrative scenarios to
examine the influence of different urban growth rates and farmers' discount rates on the dynamics of water
transfer. Although water transfer from the rural to urban study areas have been threatened for decades, water
transfers have yet to occur so we cannot empirically validate an event that has not yet occurred. Given the limited
data describing many rural‐urban water transfer projects historically, our model aims to establish a modeling
framework that can be used to explore and understand the socio‐economic dynamics of rural‐urban water
transfers, using the study area to parameterize and ground our modeling framework in reality. Thus, our study
answers the following two questions: (a) How does urban growth rate and farmers' discount rate influence the
dynamics of water transferred from a rural to an urban community over time? (b) How does individual farmers'
decision to sell their water rights impact the output from the crop production sector of the rural economy, as well
as the total unemployment and economic output within the rural community?

2. Methods
2.1. Model Framework

Traditional modeling approaches that are based on a few simple rules or equations, such as differential equations
or statistical models, are typically limited in their ability to represent micro‐level processes or adaptive decision‐
making, which are important aspects of interdependent, socio‐hydrologic systems (An et al., 2021). Agent‐based
modeling is a bottom‐up approach that can capture the collective emergent behaviors with descriptions on an
individual level, which make it a suitable tool for examining the heterogenous decisions of individual farmers to
sell their water rights (Bonabeau, 2002; Zhao et al., 2013). Thus, we developed an ABM to capture the behavior of
individual farmers in a rural community and the socio‐economic conditions that influence their decision to sell
their water rights to an urban community.

To capture the interactions between the individual farmers and the regional economy via the crop production
sector of the economy, an economic input‐output (IO) model is integrated with the ABM to develop an ABM‐IO
framework. The economic IO model is a top‐down approach that represents the quantity of output from each
sector of an economy in terms of its relationship to the output from the other sectors of the economy at the meso‐
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level (Leontief, 1970). Thus, by integrating an IO model into the Rural Economy sub‐model of this modeling
framework, we can capture the interdependency among the crop production sector and the other industries present
within the rural economy as well as model the multisectoral feedbacks between the individual farmers and the
rural economy as a whole. This feature allows us to capture how decisions made in the crop production sector
impact unemployment and economic output in other sectors of the economy.

Our model was coded in Python using the Mesa package, developed by Kazil et al. (2020). Operating at an annual
timestep, the ABM‐IO framework is composed of City, Rural Economy, Rural Community, and Farmer sub‐
models, the linkages and composition of which are visualized in Figure 1. Specifically, this framework con-
siders four types of entities: (a) water right holders/farmers (water exporter), (b) city (water importer), (c) rural
economy, and (d) rural community. The farmers and the city are actors (agents) that are actively selling and
buying water rights. Specifically, the city is buying and transferring the water rights of farmers to meet the
growing water demands of the city. The rural economy and rural community represent the environments in which
these activities are occurring, which passively influence the farmers' decisions. Each of these systems is described
further in the following sub‐sections, as well as in the Supporting Information S1, which follows the Overview,
Design Concepts, Details, and Decision (ODD + D) protocol (Grimm et al., 2006; Müller et al., 2013). We also
performed a sensitivity analysis for the ABM‐IO modeling framework using a Python package called SALib
(Herman & Usher, 2017; Iwanaga et al., 2022). We tested the influence of nine model parameters on three main
model outputs. Once the model parameters were defined, 5,000 parameter samples were generated using the Latin
hypercube sampling method available within the SALib package (Iman et al., 1981; McKay et al., 2000). These
samples were generated within lower and upper bounds specified for each parameter. Next, outputs from the
ABM‐IO modeling framework were evaluated for each sample parameter. Then, we calculated the sensitivity
indices for these nine parameters using the Delta Moment‐Independent Analysis method available within the
SALib package (Borgonovo, 2007; Plischke et al., 2013). The details and results of this analysis are included in
the SI.

Figure 1. Causal loop diagram representing causal links among variables present in the four different sub‐models of the ABM‐IO framework (i.e., City, Rural Economy,
Rural Community, and Farmers) where blue arrows represent a positive relationship between variables and red arrows represent a negative relationship between
variables.
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2.1.1. City Sub‐Model

The City sub‐model is designed to capture the water demand of a growing
urban population, the water supply that the urban municipality has at its
disposal, and the economic value placed on water by the City as it attempts to
increase its water supply by purchasing water from farmers. The City uses
microeconomics, specifically the law of supply and demand, to determine the
value of Offered Price, which is defined as the price offered annually by the
City to each of the farmers for their water rights. Assuming this system is in
equilibrium, the optimal water price is found by calculating the value at the
intersection of the urban water supply and urban water demand curves
established for the City (McConnell et al., 2012). This assumption makes it
impossible for the city to overpay for the water rights in our model setup.
Specifically, the city will not pay more than their elasticity of demand would
suggest or pay more than the farmers are willing to accept.

Before the start of the simulation, supply and demand curves are initially
defined using price elasticities for water supply and demand, respectively, as
well as an assumed initial optimal water price. Following the guidelines of
McConnell et al. (2012), the water supply and demand curves were also
assumed to be linear to reduce complexity while the price elasticities of
supply and demand for water allocations were obtained from the literature and
used to determine the slopes of these curves. Specifically, the values esti-
mated by Zuo et al. (2016) for the price elasticities of water supply and de-

mand were used in this study because it was one of the few studies to estimate values for both water supply and
demand (0.42 and − 0.57, respectively). Furthermore, the value estimated for the price elasticity of water demand
lies within the range of values estimated for residential water demand in other studies: − 0.38 by Sebri (2014),
− 0.41 by Dalhuisen et al. (2003), − 0.51 by Espey et al. (1997), and − 0.71 by Puri and Maas (2020). Furthermore,
to better understand the parametric uncertainty within our analysis, we performed an uncertainty quantification
where 5,000 samples of slopes for the water demand and supply curves were analyzed. While one model output
was found to be more sensitive to the slope of the urban water demand curve than other parameters, other model
outputs are more sensitive to other parameters. Therefore, the elasticity used to calculate the slope of the demand
curve does not significantly influence all outputs from the modeling framework (see Supporting Information S1
for more details).

Beginning in the first year (timestep), the City increases water demand based on the increase in urban population
that year. As urban water demand in the City increases, Offered Price will also increase. Similarly, the urban
water supply will adjust based on the quantity of water rights bought from farmers at the end of the previous year
(timestep). As the water supply available to the City increases, Offered Price will decrease. These adjustments in
water supply and demand will cause an adjustment to the price offered to farmers for their water rights every year
(see Figure 2). A boundary condition was also added to the city sub‐model to ensure that the lowest price that the
City could offer the farmers was $0.00/m3, which indicates that the City has enough supply to meet demand at the
current timestep and does not require additional supplies from the rural community.

2.1.2. Rural Economy Sub‐Model

An economic input‐output (IO) model is integrated into the ABM‐IO framework, referred to as the Rural
Economy sub‐model, to capture the interdependency of agriculture and other rural economic sectors. Generally,
the economy is divided into m distinct, interdependent sectors that each produce a quantity of output to meet a
corresponding final demand each year (Leontief, 1970). To produce one unit (often a monetary unit) of economic
output, each economic sector requires k factors of production that cannot themselves be produced, including
labor, built capital (fixed assets), land, and water. Thus, the IO model calculates the annual economic output and
factor use, including labor and water use, from each sector in physical, monetary, or mixed units (see Equations 1
and 2).

(I − A) x = y → x = (I − A)− 1 y (1)

Figure 2. As the urban population grows, the initial water demand curve (D1)
moves to a new position (D2). As the urban municipality purchases
additional water supplies from the farmers, the initial water supply curve
(S1) also moves to a new position (S2). The new optimal water price lies at
the intersection of these new curves and this price will be offered by the City
to the farmers for their water rights.
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ɸ = Fx → ɸ = F(I – A)− 1y (2)

where,

A is the coefficient matrix (m × m), F is the matrix of factor requirements per unit of output (k × m), y is the
final demand vector (m × 1), x is the economic output vector (m × 1), I is the identity matrix (m × m), andɸ is
the factor use vector (k × 1).

These factors of production are only available in finite quantities and constrain production since factor use cannot
exceed factor availability (referred to as factor endowments). Therefore, the IO model utilizes an objective
function to minimize factor use while ensuring that factor use does not exceed availability and production still
satisfies final demand (see Equation 3). If the required resource endowments are unable to meet the specified
consumer demand, then no feasible solution would result for a scenario (Duchin & Levine, 2011). Additionally,
each factor of production (labor, built capital, land, and water) has a corresponding price (wages, proprietor
income, land rents, and water price, respectively), which must be paid to produce economic output (Duchin &
Lopez‐Morales, 2012; Lopez‐Morales & Duchin, 2015). In this first iteration of the model, we assume that factor
prices are fixed throughout the simulation period.

Minimize Z = πʹFx (3)

subject to (I − A) x ≥ y and Fx ≤ f

where,

x is the economic output vector (m × 1), y is the final demand vector (m × 1), A is the coefficient matrix
(m × m), f is the factor endowments vector (k × 1), F is the matrix of factor requirements per unit of output
(k × m), I is the identity matrix (m × m), and π is the vector of factor prices (k × 1).

In the Rural Economy sub‐model of the integrated ABM‐IO framework, the IO model was coded using the
CVXPY package in Python, which was initially developed by Diamond and Boyd (2016) and further described by
Agrawal et al. (2018). It is assumed that the final demand for Crop Production, one of the agricultural sectors, is
composed entirely of demand for export while final demand for the service sectors (e.g., Professional, Educa-
tional, Health, Recreational, and Other Services) is composed entirely of local demand. These services are
assumed to decline in proportion to employment declines in other sectors as unemployed rural residents will first
decrease spending in these areas. Specifically, the baseline final demand from each of these service sectors was
divided by the baseline number of people employed in the rural economy to obtain the different consumption rates
associated with these sectors. Thus, based on these different consumption rates, final demand will decline as
employment in the county declines. The final demand associated with the other economic sectors is assumed to be
a combination of export and local demand.

At each timestep, the water endowment associated with Crop Production is reduced as farmers' water rights are
sold to the City. Additionally, the final demand associated with Crop Production is also adjusted so that the
quantity of water used by this sector is equivalent to the new water endowment, which results in a reduction of
economic output for that timestep (year). The final demand associated with the service sectors is also reduced in
response to reductions in jobs, resulting from the reductions in economic output from Crop Production. We
assume that no changes in final demand occur because of changes in commodity prices since changes in local
production would be unlikely to significantly affect commodity prices as these prices are determined by national
or global market forces. Since the IO model interprets all changes to the final demand vector as changes in the
number of sales rather than as changes in price, no sensitivity analysis was necessary for commodity price.
Additionally, no sensitivity analysis was conducted for the parameters in the IO model since values representative
of Alamosa County were obtained for these parameters. Thus, the outputs from the IO model are used to calculate
Unemployment in the Rural Community sub‐model (see Section 2.1.3), and the discount net present value of
farmers' profit, which is input into the Farmers' sub‐model (see Section 2.1.4). The farmers use this present value
to assess the value of profit that they expect to earn using their water allotment to irrigate their cropland over a
specified planning horizon. The farmers compare this value to the payment being offered to them by the city
during the current year. This comparison captures that the value of the irrigation water has recurring benefits to the
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farmer, while the payment from the city only happens in the evaluation year. The city does not value water in the
same way as farmers since the city's objective is to meet the water demands of its growing population. Therefore,
the city does not need to estimate the present value of its water holdings because it is not critical to its strategy.

In this ABM‐IO framework, the annual proprietor income generated by the crop production sector of the IOmodel
represents the collective annual profit of farmers in that sector. Thus, to calculate the present worth of the farmers'
annual profit, this annual profit is multiplied by the discount factor, shown in Equation 4 (Lindeburg, 1986), using
several different discount rates described in Section 2.3 and a planning horizon of 20 years, which represents the
time over which farmers consider benefits and costs. The 20‐year planning horizon was selected because it is a
typical loan period of Farm Service Agency (FSA) farm and ranch loans (FSA, 2023). The discount factor
represents the value that the farmers place on the profit that they expect to receive during the 20‐year planning
horizon. If the discount factor is small, then the present worth of future returns will also be small.

DF = (
1 + i)t − 1
i(1 + i)t

(4)

where,

DF is the discount factor that annual profit is multiplied by to calculate present worth (unitless), i is the discount
rate (unitless), t is the number of years into the future of each annual profit that is to be brought to present.

2.1.3. Rural Community Sub‐Model

For this first iteration of the modeling framework, we chose to represent the Rural Community sub‐model as an
environment that is imposed on the individual farmers and influences their decisions, rather than as a collective
because we wanted to establish the most basic dynamics between the city and farmers, which could be used as a
foundation to build more complex dynamics. One of the concerns of rural residents in our study area is the
economic impacts of water transfers on the rural community, which we represent in our model as unemployment.
Each timestep, community‐level unemployment is calculated in this sub‐model using the labor endowment and
number of jobs output from the Rural Economy sub‐model. However, rural residents are also concerned about
loss of culture and other complex concerns. Due to the uncertainty in parameterizing and quantifying such abstract
variables, Unemployment within the rural community as a percentage of the potential workforce, a proxy for the
economic health of the community, is considered the driver of social pressure. Other macro‐level factors that
could also affect unemployment are assumed to remain stable over the simulation period to isolate the effect of
water sales.

Social Pressure (unitless) is calculated at each timestep n by multiplying the difference between current and initial
unemployment by a conversion factor, CF (1/%; see Equation 5). Social Pressure is exerted on farmers not to sell
their remaining water rights and increases as the discrepancy between community held expectations of unem-
ployment and actual unemployment increases. Social Pressure is assumed to be zero at the beginning of the
simulation before water sales occur (i.e., Unemploymenti serves as the baseline unemployment expectation). The
conversion factor, CF, is initially assumed to equal 1.0 per unit of unemployment, but other values can be
explored if social pressure is assumed to have a greater or lesser influence on farmer's decision‐making.

Social Pressuren = CF(Unemploymentn − Unemploymenti) (5)

2.1.4. Farmers Sub‐Model

Irrigators holding water rights are represented as autonomous agents within the Farmers' sub‐model of the ABM‐
IO framework. Expected utility theory drives farmer behavior within the Farmers sub‐model. This commonly
used behavioral theory assumes that all farmer decisions are driven by their desire to maximize their personal
utility (Schrieks et al., 2021). To formulate this behavioral theory within the Farmers sub‐model, we utilize a
discrete choice modeling approach. Discrete choice models were initially derived from this concept of “utility
maximization” for the purposes of representing qualitative human choice among distinct alternatives by
McFadden (1974). In these models, each alternative has an associated utility function that consists of different
attributes (McFadden, 1972). In the Farmers sub‐model, there are two utility functions representing the choice to
keep water rights and the choice to sell water rights, respectively. The incorporation of water rights is a purely
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binary outcome in this first iteration of the model because we are representing the “buy and dry” approach to rural‐
to‐urban water transfers where the city offers the farmers a price for their water rights that is competitive with the
present worth of the annual profit that the farmers expect to earn. While this approach is typical in the western
United States, there have also been cases with leasing options or options where farmers sell just a portion of their
water rights have been pursued. Future extensions of the model framework can examine these other types of rural‐
to‐urban water transfers.

Following the principles of discrete choice modeling, the utility functions associated with each choice available to
farmers are defined by assigning different weights (β) to the three attributes: Offered Price ($1000/ac) obtained
from the City sub‐model, Social Pressure (unitless) obtained from the Rural Community sub‐model, and the
present worth of Profit ($1000/ac) obtained from the crop production sector of the Rural Economy sub‐model
during timestep n. These β coefficients are used to define the utility functions associated with each decision
available to the individual farmers (see Equations 6 and 7) (McFadden, 1972). The β coefficient for Offered Price
(βOP,i), has a negative value, meaning that as the price offered by the city to the farmers increases, the utility
associated with keeping water rights decreases, Utilityn,Keep (unitless), thereby making it less attractive for the
farmer to keep their water rights (Mishra, 2014). The β coefficients for Profit and Social Pressure (βP,j and βSP,j,
respectively) also have negative values, which indicate that the higher the present worth of farmers' annual profit,
or the higher the social pressure placed on farmers, these farmers get less utility from selling water rights,
Utilityn,Sell (unitless). There is an alternative‐specific constant (ASC) associated with the choice to sell water
rights, βASC,Sell (unitless), which represents other characteristics of this choice that are not made explicit within the
utility function. This value is also negative, implying that this alternative is more negatively perceived than the
choice to keep water rights (Mishra, 2014). The highest (least negative) utility associated with keeping or selling
the water right is the preferred choice of the alternatives at that timestep.

Utilityn,Keep = βOP,i ∗Offered Pricen (6)

Utilityn,Sell = βP,j ∗Profitn + βSP,j ∗Social Pressuren + βASC,Sell (7)

The utilities calculated by the Farmers sub‐model reflect the preferences of the entire farmer population during
each timestep, but to capture the preferences of the individual farmers, this discrete choice model utilizes random
utility theory, which links the deterministic utility functions with a model of human behavior (Bierlaire, 1998).
Specifically, this theory proposes that there is a probability distribution associated with a set of discrete choices
and each individual agent will make their decision based on this distribution. Therefore, once the utilities are
calculated at the end of each timestep to correspond with the choice to keep water rights and the choice to sell
water rights, these utilities are then used to predict the probability that an individual farmer will choose to keep
water rights, Pn,Keep (unitless), and the probability that they will choose to sell water rights, Pn,Sell (unitless),
during that timestep (see Equations 8 and 9) (Bierlaire, 1998; McFadden, 1972). The Farmers sub‐model gen-
erates a uniformly distributed random number between 0 and 1 for each farmer agent. If the value of the random
number is greater than the probability calculated for keeping water rights during that timestep, then the farmer will
sell their water rights, as shown in Equations 8 and 9.

Pn,Keep =
eUtilityn,Keep

eUtilityn,Keep + eUtilityn,Sell
(8)

Pn,Sell =
eUtilityn,Sell

eUtilityn,Keep + eUtilityn,Sell
= 1 − Pn,Keep (9)

By calculating these probability distributions, we link the meso‐level information obtained from the other sub‐
models to the micro‐level, heterogeneous decisions of the individual farmers in this sub‐model and capture the
emergent behavior that results from these individual decisions. We used this simplified approach to differentiate
farmer decision‐making, but our framework is flexible such that more complex behavioral rules or theories could
be used to differentiate farmers in future iterations of the modeling framework.
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2.2. Case Study and Data Requirements

We applied our ABM‐IO framework to Alamosa County in Colorado, US to demonstrate our framework within
the context of a real‐world case study. Alamosa County, and the broader San Luis Valley upon which it resides,
has faced repeated water transfer attempts by Douglas County, a rapidly growing urban community located in the
metropolitan area of Denver, Colorado. Douglas County aims to buy irrigators' water rights and transfer these
waters to meet the city's growing water demands (Sakas, 2022) (see Figure 3). In 2022, the community rejected a
proposal by Renewable Water Resources to pump approximately 22,000 acre‐feet (27 million m3) of water
annually to Douglas County from the San Luis Valley, a move that would have permanently retired groundwater
wells in the area. This decision to reject the most recent water transfer offer came after significant social pressure
and backlash. Water conservancy districts, many residents, and environmental groups in the San Luis Valley
strongly opposed the project, arguing that they cannot afford a further loss of water. Despite this setback, like
previous unsuccessful attempts over the past decades, leaders have not ruled out the possibility of future water
transfers from the San Luis Valley (SLVEC, 2022). Thus, Alamosa County makes for an ideal case study to
examine how water transfers from rural to urban communities could potentially impact a region in the long term.

Alamosa County is a rural community located in the San Luis Valley of Colorado, US with a population of 16,376
people and a total area of 1,870 km2. Though Alamosa County receives less than 182 mm of precipitation
annually (National Oceanic and Atmospheric Administration, 2022), it supports 28,000 ha of cropland due to an
extensive irrigation network supplied by confined and unconfined aquifers as well as the headwaters of the Rio
Grande. Irrigated crop production represents a significant component of the San Luis Valley's economy, espe-
cially alfalfa, potato, and barley crops (SLVDRG, 2022). Indeed, the farms in this region represent close to $400
million in market value of products sold (SLVEC, 2022), the barley grown in this region is one of the main
suppliers for the Coors Beer Company (Brock & Hanson, 2023), and it is one of the largest potato producing
regions in the United States (SLVEC, 2022).

Our model was parameterized with data from Alamosa County. The Rural Economy sub‐model was parame-
terized using county‐level, input‐output data for Alamosa County, including sectoral intermediate demand,
sectoral final demand, sectoral economic output, wages, proprietor income, labor, land, and water requirements.
These data were for the year 2021 and come from the IMPLAN Group (2023). IMPLAN obtained input‐output
data from various federal agencies that conduct annual data collection and estimates, such as the US Bureau of

Figure 3. Map of Colorado, US. Counties are delineated in gray, with the proposed water transfer project being from Alamosa County (blue) to Douglas County (green).
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Labor Statistics (BLS), US Census Bureau County Business Patterns (CBP), and the US Environmental Pro-
tection Agency (EPA). In addition to obtaining data from different sources, IMPLAN also provided estimates for
unavailable data, which are benchmarked against other data to verify accuracy. Additionally, we obtained sectoral
built capital requirements for 2021 from the US Bureau of Economic Analysis (BEA) (BEA, 2022a, 2022b,
2022c). County‐specific data on agricultural land use and land rents were obtained from the National Agricultural
Statistics Service (NASS). All of the sectoral, input‐output data obtained for Alamosa County were aggregated
into 18 sectors following the guidelines provided by Miller and Blair (2009). Thus, this sub‐model represents the
rural economy as 18 distinct sectors (see SI), including three agricultural sectors and four service sectors, which
are distinguished following the North American Industry Classification System (US Census Bureau, 2022).

In the Farmers sub‐model, information provided by IMPLAN on the number of proprietors in the crop production
sector was used to estimate the number of farmer agents present within the model (245). The specific attributes
determined to influence farmers' decision‐making were identified based on survey responses collected from
farmers in Alamosa County, Colorado regarding the price at which they would be willing to make changes to their
farming operations (Offered Price) and the income that they would have to obtain to keep their operations the
same (Profit). Furthermore, it is also assumed that Social Pressure is an influential variable on farmers' decision
making in Alamosa County since survey responses indicate that the health of the rural community does influence
farmers' decision‐making to a certain degree. Thus, the survey data obtained from farmers in Alamosa County was
used in the Farmers sub‐model to parameterize the utility functions associated with keeping and selling water
rights. Additional details on the specific survey questions used in this analysis are included in the SI. We used the
Python package Biogeme, along with the survey data collected from farmers in Alamosa County, to estimate β
coefficients for Equations 6 and 7, which serve as input for the discrete choice model using maximum likelihood
estimation (Bierlaire, 2023). Using Biogeme, a range of values were identified for each β coefficient, but only the
range of coefficients estimated for Offered Price and Profit showed any robustness.

Thus, we also conducted a sensitivity analysis of the ASC and the β Coefficients for Offered Price, Social
Pressure, and Profit (see SI). For this analysis, 5,000 samples were generated within specified bounds. These
bounds were initially based on the range of coefficients estimated from the farmer survey data using the Biogeme
Python package (Bierlaire, 2023) and then the lower bound was reduced to minimize the number of failed model
runs. As a result, the ASC was bounded by − 2.5 and − 1.0, the β Coefficient for Offered Price was bounded by
− 1.0 and − 0.1, the β Coefficient for Social Pressure was bounded by − 1.5 and − 0.1, and the β Coefficient for
Profit was bounded by − 1.5 and − 0.1. The ASC and the β coefficients assigned to the variables for the scenario
analysis were selected within these bounds. The β coefficients assigned to Offered Price and Profit (− 0.52 and
− 0.72, respectively) were selected within the middle of their respective bounds. For the β coefficients associated
with Social Pressure and the ASC, many different values were tested based on prior knowledge of the case study
location and the resulting system dynamics of the ABM‐IO framework were compared to the mental maps
developed based on the causal loop diagram shown in Figure 1. The values ultimately selected for Social Pressure
and the ASC were − 1.02 and − 1.87, respectively.

For the Rural Community sub‐model, unemployment rates for Alamosa County were obtained from the US
Bureau of Labor Statistics (2023). The initial value of community‐level unemployment is set at 5.8%, which is the
average of the monthly unemployment rates reported by the US BLS for Alamosa County in 2021 (US
BLS, 2023).

Finally, we chose to represent the decision‐making in the City sub‐model as a competitivemarket. Since the 1930s,
Colorado has implemented awater diversion project called theColorado‐Big Thompson Project in the northeastern
region of the state (Howe, 2015). This project allows forwater purchases in an openwatermarket that is comparable
to a real estatemarket. Given the long history of thismarketmodel forwater in the state, it was reasonable to assume
that a new water diversion project would follow a similar model of a competitive market. Thus, information on
urbanwater use per capitawas obtained fromDenver'sWater Efficiency Plan (2017). Population growth rateswere
obtained from the US Census Bureau (Korhonen, 2023) as was the initial population of the city, which was set to
700,000 people (the current population of the city of Denver) (US Census Bureau, 2023). Additionally, to deter-
mine the initial offered price used to establish the water demand and supply curves in the City sub‐model, we
examined a study byWomble and Hanemann (2020), which reported some actual market prices for water transfers
aroundDenver, Colorado. Based on data obtained for 523 transactions,Womble andHanemann (2020) found that,
from 2008 to 2018, water prices ranged from $198/acre‐foot ($0.16/m3) to $67,015/acre‐foot ($54.33/m3) with a
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median price of $8,470/acre‐foot ($6.87/m3). Therefore, we selected an initial Offered Price of $1.40/m3, which is
within that reported range while still being competitive with the initial farmer income data reported by IMPLAN to
ensure that the dynamics between the rural and urban community could be observed throughout the entire simu-
lation period. Thus, we begin themodel simulationwhere the offered price is acceptable to some farmers so that we
can observe the socio‐economic impacts of rural‐to‐urban water transfers in our scenarios.

2.3. Scenario Analysis

We compared different model scenarios to examine how urban growth rate and farmers' discount rate influence
farmers' decisions and impact unemployment within the rural community. First, we assess how different annual
urban population growth rates may impact the rural community over a 25‐year simulation period, representing
how the communities may be transformed in a single generation. We examined three different annual growth
rates, 2%, 6%, and 10%, which are based on growth rates reported by the US Census Bureau for the city of Denver
(2%) and some of the fastest growing cities in the western United States from July 2020 to July 2021 (Korho-
nen, 2023). Thus, while these higher growth rates are much less probable in the real world than the lowest growth
rate, they are still within the bounds of plausibility and are appropriate for the purpose of examining the influence
of urban growth on results produced by the model framework.

Second, we selected three different discount rates (2.5%, 15%, and 28%), which represent a range of discount rates
plausibly used by farmers. The lowest plausible discount rate of 2.5% follows the US Office of Management and
Budget (OMB) guidelines for benefit‐cost analyses (OMB, 2022). However, previous studies indicate that
farmers use significantly higher discounting when making decisions. Specifically, Duquette et al. (2012) surveyed
a total of 293 farmers across two sample groups regarding their discounting behavior and, using a maximum
likelihood model of the survey results, estimated that the farmers used a discount rate ranging from 28% to 43%.
Meanwhile, Pannell et al. (2014) developed a model to assess the farm‐level economics of conservation agri-
culture and applied discount rates ranging from 10% to 30%. Thus, we selected a middle discount rate of 15% and
a highest discount rate of 28%, which is the minimum value recommended by Duquette et al. (2012), because the
influence of discount rate on the discount factor becomes negligible at discount rates higher than this value.

3. Results
3.1. Sensitivity of Rural Community Outcomes to Farmer Discount Rate and Urban Growth

We find that crop water use declines in all scenarios but that the greatest long‐term decline corresponds with
higher city growth rates while the greatest short‐term decline corresponds with larger farmer discount rates, which
seems to be reflective of reality (see Figure 4). Specifically, in a review of 103 water reallocation projects from
around the world, 80 of these projects cited “population growth” as a driver of reallocation (Garrick et al., 2019).
Additionally, when irrigation water is distributed to farmers via shared infrastructure, all farmers selling their
water rights is likely to be the eventual outcome since the fixed costs associated with maintaining the infra-
structure is spread across all users. As more users sell their water rights, there are fewer farmers to share the costs,
which increases the financial burden on the remaining irrigators and increases the likelihood that they will sell
their water. At higher discount rates, farmers place less value on future crop profits and are therefore more in-
clined to accept a lower price for their water early in the simulation. Thus, the influence of annual profit on
farmers' decision making becomes insignificant at higher discount rates and, in those scenarios, the dominant
influence on farmers' decision making oscillates between the price offered by the city and social pressure from the
rural community throughout the simulation period. Farmers value present gains much more than future gains,
such as when a discount rate of 28% is used, which is why there is a steep decline in crop water use within the first
5 years, irrespective of how fast the city is growing. However, if farmers adopt a lower discount rate (i.e., 2.5%),
then there is a more gradual initial decline in crop water use amongst all city growth scenarios. Regardless of
which discount rate is applied, most of the farmers will sell their water rights in 25 years at the highest urban
population growth rate (10%/yr), which implies an economic collapse of the crop production sector since output
from this sector cannot proceed without access to a required resource.

While the chosen discount rate impacts the initial selling of water from farmers to the city, the outcome at the end of
the 25‐year simulation is very similar for both high and low discount rates. Conversely, the different urban growth
rates do not lead to notable difference in water transfers (and thus a corresponding reduction in crop water use)
initially. However, faster growth rates begin to exert pressure on the urban community to extend an ever‐increasing
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offer price to farmers, which entices more farmers to fallow their irrigated fields and transfer their water to the city.
Figure 5 displays these long‐term changes in offer price extended to the farmers by the city. At the highest urban
population growth rate, almost all the farmers have sold their water rights by the end of the simulation period while
at the lower urban population growth rates, sales in water rights decline in response to social pressure.

During the first few years of the simulation, the price offered to the farmers declines in response to the initial water
right sales, which results in a sharp increase in water supply available to the City. At an urban growth rate of 2.0%/
yr, the price offered to the farmers declines from 1.40 to less than 1.00 $/m3 over the 25‐year simulation period.
However, at an urban growth rate of 6.0%/yr, the price offered to the farmers increases threefold from 1.40 to over
4.00 $/m3, and at an urban growth rate of 10.0%/yr, the price offered to the farmers increases over eightfold, from
1.40 to close to 12.00 $/m3 since the ever‐increasing urban water demand drives the water price higher. This trend
in rising water prices seen in our model follows similar trends in water markets located in other regions of
Colorado as reported by the Colorado Real Estate Journal (CREJ, 2020). The end results for each urban growth
rate are about the same irrespective of the discount rate used by farmers since the price offered by the City to the
farmers is not influenced by the discount rate used to calculate the present worth of farmers' annual profit.

Unemployment within the rural community follows a similar trend as crop water use (see Figure 6) demonstrating
the strong connection between crop irrigation and the economic health of the rural community. Specifically, if

Figure 4. The quantity of water used (million m3) by the crop production sector in the Rural Economy over the 25‐year
simulation period where (a) displays the results for each urban population growth rate (%/yr) using a 2.5% discount rate (DR),
(b) displays the results for each growth rate (%/yr) using a 15% DR, and (c) displays the results for each growth rate (%/yr)
using a 28% DR.
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water rights are rapidly sold, then unemployment rapidly increases. If few water rights are sold, then unem-
ployment does not increase very much. The patterns observed for these two variables are the result of the same
phenomenon. The final total unemployment rate within the rural community is about the same irrespective of the
discount rate, although total unemployment initially rises much more sharply when a 28% discount rate is applied
due to a fast selloff of farmer water rights and a corresponding hit to the rural economy.

At an urban growth rate of 2.0%/yr, the total unemployment in the rural community increases from 5.8% to around
8% at the end of the simulation period. At an urban growth rate of 10.0%/yr, however, the total unemployment in
the rural community increases from 5.8% to around 14%. If enough farmers make the decision to sell their water
rights, then the health of the rural economy will diminish unless there is a strong response from the rural com-
munity. However, a fast‐growing city can offer farmers a financial incentive that will outweigh any social op-
position to sell their water rights, resulting in a swifter decline of the rural economy.

3.2. Individual Farmer Decisions Have Community‐Level Impacts

Every year, each farmer decides to keep or sell their water rights. The quantity of water being used by the crop
production sector of the rural economy decreases throughout the simulation period as the number of farmers who
have sold their water rights increases (see Figure 4). As a result of these sales, the total unemployment in the rural
community also increases during the simulation period. Figure 7 compares the number of farmers who have sold
their water rights to the total unemployment of the rural community for our middle scenario (6.0%/yr urban
growth rate and 15% discount rate). As can be seen in Figure 7, approximately 40% of the initial water rights are
sold within the first few years with few additional sales until around the fifteenth year, which is caused by a

Figure 5. The price offered ($/m3) by the City to the Farmers over the 25‐year simulation period where (a) displays the results
for each urban population growth rate (%/yr) using a 2.5% discount rate (DR), (b) displays the results for each growth rate
(%/yr) using a 15% DR, (c) displays the results for each growth rate (%/yr) using a 28% DR.
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balancing loop present within the causal loop diagram (see Figure 1). This loop captures how water right sales are
counteracted by social pressure from the rural community, which is driven by unemployment in the rural com-
munity. For example, around the fourth year of the simulation period, a threshold was reached where social
pressure became more influential to the farmers than the price offered by the city, which resulted in an inflection
point (see Figure 7). Furthermore, due to the linear relationship between different sectors' factor requirements and
outputs represented by the IO model, the number of farmers who have sold their water rights and the total un-
employment in the rural community follow similar trends during the 25‐year simulation period. Thus, the de-
cisions made by individual farmers to sell their water rights for personal financial gain impact the rural
community as a whole and can ultimately cause the health of the rural economy to decline significantly.

While Figure 7 displays how the decisions of the individual farmers impact the rural economy as a whole, Figure 8
displays how the changes occurring within the crop production sector of the rural economy are influencing the
other sectors of the rural economy. Specifically, as farmers sell their water rights to the City, economic output
from the crop production sector declines. As a result of this decreasing agriculture output, unemployment in the
crop production sector increases, which causes demand from the service sectors of the economy to decrease,
which results in economic output declining in these sectors of the economy as well (see Figure 8). Thus, when the
annual urban population growth rate is 6.0% (and a discount rate of 15%), almost 50% of the economic output
from the crop production sector has disappeared by the end of the 25‐year simulation period and, as a result, the
economic output from the service sectors has decreased by as much as 5% (see Figure 8). Apart from the service
sectors, economic output from the other sectors of the rural economy has collectively diminished 2% by the end of
the of simulation period since all sectors of the economy are interdependent. Therefore, a decline in productivity

Figure 6. The total unemployment (%) in the Rural Community over the 25‐year simulation period where (a) displays the
results for each urban population growth rate (%/yr) using a 2.5% discount rate (DR), (b) displays the results for each growth
rate (%/yr) using a 15% DR, and (c) displays the results for each growth rate (%/yr) using a 28% DR.
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within one economic sector is not an isolated event and has indirect effects on other sectors of the economy, such
as a decline in economic output and an increase in unemployment.

4. Discussion and Conclusions
In this study, we present a novel modeling framework that links a “bottom‐up” ABM approach with a “top‐down”
economic IO model to capture the socio‐economic dynamics and impacts of water transfers from rural com-
munities to cities. We also conducted several scenario‐based comparisons that examine how different urban
growth rates affect the price offered by the city to farmers for their water rights and influence the decision made by
individual farmers to sell their water rights, as well as how these individual decisions impact total unemployment

Figure 7. The total unemployment (%) in the Rural Community over the 25‐year simulation period compared to the number of farmers who have sold their water rights
during that period given a 6.0%/yr urban growth rate and a 15% discount rate (DR) used by farmers.

Figure 8. When annual urban population growth rate is 6.0% and farmers apply a 15% discount rate, the total decrease (%) in
jobs after the 25‐year simulation period from the following sectors: (1) Crop Production, (2) Professional & Business
Services, (3) Educational, Healthcare & Social Services, (4) Arts, Recreation, Accomodation & Food Services, (5)
Miscellaneous Services, and (6) the other 13 sectors of the rural economy combined.
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and economic output in the rural community over time. Specifically, the sale of water rights results in the
contraction of the crop production sector of the rural economy, which in turn results in a contraction of the service
sectors causing jobs and economic activity to diminish across all sectors. Our model captures the general dy-
namics of rural‐to‐urban water transfers seen in the western US (Garrick et al., 2019). For example, Owens Valley
experienced a period of rapid water right sales from 1922 to 1927 when the water rights of farmers were acquired
by the city of Los Angeles, California. This period was followed by a period of very few water right sales until all
the water rights were transferred to the city by 1932 (Libecap, 2009). Although the rural‐to‐urban water transfer of
Owens Valley was completed in fewer years than any of the scenarios we examined in this study, our model was
still able to capture these oscillations between periods of rapid sales and periods of few sales.

We attempt to balance model generalizability with realistic model parameterization, but this approach comes with
its limitations. First, there is a level of structural uncertainty associated with the model outputs, which results from
assumptions made when coupling these complex systems (Lin & Yang, 2022). While we took steps to minimize
parametric uncertainty, such as using real‐world data and literature to parameterize the modeling framework, this
structural uncertainty has yet to be quantified. Second, migration and other adaptation dynamics were not fully
accounted for in the current version of the model. The official government labor requirements reported by the crop
production sector used to build the IO model, mostly likely do not include migrant or undocumented laborers.
Therefore, the model results for the number of jobs and total unemployment are likely conservative. Additionally,
if total unemployment in the rural community reaches a certain threshold, then it would be reasonable to assume
that members of the rural community would start to move away or that the rural economy may adapt by
encouraging the development of other sectors (e.g., solar energy generation), which could alter the dynamics
between the rural economy and community. Third, this iteration of our modeling framework does not consider
changes in water availability. Therefore, we do not examine how the dynamics of water transfers between the city
and rural community differ under drought conditions, for example, Fourth, we assume that the city has completely
exhausted all other water supply strategies and their only source of water is from the rural community. There will
likely be alternative options, such as water reuse, desalination, or water conservation. While these options may be
initially cost prohibitive or socially undesirable, they may become more attractive as purchasing water from
holdout farmers becomes more expensive. Additionally, we assume that transaction costs in the market are
implicitly included in the water price. That is, the water price represents net benefits to the farmer. We also
assume the farmers all possess perfect knowledge of the price offered by the city. If information or power
asymmetry existed between the city and the farmers, then an alternative modeling approach would assume a
noncompetitive water market. Finally, our model represents an agricultural community that has other economic
activity apart from crop production. Communities that are more reliant on agriculture would likely have even
more pronounced negative economic outcomes than our case study and would be worth examining in future
iterations. Thus, the scenario results generated by this first iteration of the modeling framework represent a basic
relationship between a city and rural community, which we can use as a foundation to build more complex
dynamics between the city and rural community. Future extensions of the model will address some of these
limitations by adding a migration component, exploring more diverse behavioral theories and heterogeneity in
farmer responses, and including other water supply sources and mechanisms for the city to compare water supply
alternatives. Other possible model extensions are captured in the ODD + D protocol included in the SI.

Our ABM‐IO framework provides new insight into the socio‐economic conditions that influence farmers' de-
cision to sell their water rights to a city, and the impacts of these decisions on the economic prosperity of the rural
community. Specifically, this framework can allow us to anticipate the potential for rural economic collapse,
which may arise because of dynamics between a city and a rural community. By understanding how and when
these collapses occur, policy can be designed to limit howmuch water may be transferred to the urban community
each year and mitigate the negative socio‐economic impacts on the rural community. For example, the rural
community could limit water sales per year, only sell actual water savings (see Grafton et al., 2018) resulting from
a shift to more efficient irrigation technologies, and/or require the water exporter to establish a community fund to
help offset the broader community harm caused by the water sales. These measures could be taken by the rural
community to protect against the rapid sale of water rights, which limits adaptation time, and control the socio‐
economic transition caused by rural‐to‐urban water transfers. By utilizing extensions of this modeling framework
to engage with stakeholders, we can identify strategies for sustainable water management in the western United
States and other water‐scarce regions.
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