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A B S T R A C T

The Crop-Hydrological-Agent Modeling Platform (PyCHAMP) is a Python-based open-source package designed
for modeling agro-hydrological systems. The modular design, incorporating aquifer, crop field, groundwater
well, finance, and behavior components, enables users to simulate and analyze the interactions between human
and natural systems, considering both environmental and socio-economic factors. This study demonstrates
PyCHAMP’s capabilities by simulating the dynamics in the Sheridan 6 Local Enhanced Management Area, a
groundwater conservation program in the High Plains Aquifer in Kansas. We highlight how a model, empowered
by PyCHAMP, accurately captures human-water dynamics, including groundwater level, water withdrawal, and
the fraction of cropland dedicated to each crop. We also show how farmer behavior, and its representation, drives
system outcomes more strongly than environmental conditions. The results indicate PyCHAMP’s potential as a
useful tool for human-water research and sustainable groundwater management, offering prospects for future
integration with detailed sub-models and systematic evaluation of model structural uncertainty.

1. Introduction

The investigation of the interconnection between human actions and
the natural world is crucial for addressing complex management chal-
lenges. The study of this interconnection is known by many names in
literature, including coupled human and natural systems (CHANS; Liu
et al., 2007), socio-hydrology (Sivapalan et al., 2012), social-ecological
systems (SES; Ostrom, 2009), hydro-economic modeling (Harou et al.,
2009), and multi-sector dynamics (Reed et al., 2022). These research
communities focus on the multifaceted drivers and feedback mecha-
nisms that define interactions between humans and nature with the goal
of improving sustainable environmental management. Understanding
the interconnection of human-natural systems has been instrumental in
refining policy evaluation related to incentives (Lin et al., 2023),
advancing integrated resource management strategies (Berglund, 2015;
Schrieks et al., 2021), enhancing disaster risk reduction plans (Han
et al., 2022), and fostering sustainable development (Castro et al., 2020;
Savin et al., 2023; Zhang et al., 2024).

In the context of sustainable groundwater management, a major part
of the world’s food production depends on irrigation from groundwater
(Mukherjee et al., 2021). Increasing population (Lall et al., 2020),
expansion of irrigated cropland (Bhattarai et al., 2021), and changing
climate (Taylor et al., 2013) all combine to intensify groundwater
depletion (Jasechko et al., 2024), leading to calls for greater water
conservation (Aeschbach-Hertig and Gleeson, 2012). However,
increased groundwater demand often leads to the tragedy of the com-
mons (Ostrom, 1990), where individual users, acting independently
according to their self-interest, overuse and deplete a shared resource
like groundwater, ultimately harming the resource’s long-term sus-
tainability. These complex human-nature interactions leading to aquifer
depletion highlight the need to incorporate the dynamics of
human-natural systems into sustainable groundwater management,
where farmers sharing a common aquifer respond to each other’s water
use. Factors such as crop choice, irrigation methods, climate conditions,
and water rights influence these behaviors, reflecting the complexities of
broader human-natural systems.
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However, most groundwater sustainability modeling efforts treat
human decisions as fixed boundary conditions. Rather than simulating
them endogenously, these models do not account for dynamic feedback
between human and natural systems. For example, Malekinezhad and
Banadkooki (2017) studied the impact of climate change and human
pressures on an aquifer using MODFLOW (Harbaugh, 2005), where the
water requirements of cultivated areas are a time series input to MOD-
FLOW. The global hydrological model PCR-GLOBWB (Sutanudjaja et al.,
2018) has an irrigation and water use module to simulate human ac-
tivity, but the water demands are also derived from input data, such as
climate and population. Studies that adopted PCR-GLOBWB cannot
endogenously simulate the active human decisions and their in-
teractions with the natural environment (Wada et al., 2016; Wu et al.,
2024). The diverse and complex nature of individual farming decisions,
influenced by environmental and socio-economic factors, highlights the
variability and complexity inherent in human-natural systems. This
suggests a need for more versatile modeling approaches to better
accommodate the nuanced and varied aspects of these systems (Gorelick
and Zheng, 2015; Hrozencik et al., 2017).

Agent-based modeling (ABM), a bottom-up modeling approach,
shows great promise in capturing the interactions among heterogeneous
natural and human agents (Kaiser et al., 2020; Zellner, 2008). Here, we
define agents to be entities with unique attributes and behavioral rules
like farmers, aquifers, well infrastructures, crop fields, and economic
markets. Agent-based modeling has informed groundwater management
on scales and dimensions not feasible with traditional fieldwork,
including the assessment of social tipping points in global groundwater
management (Castilla-Rho et al., 2017), analysis of groundwater mar-
kets (Aghaie et al., 2020b; Zolfagharipoor and Ahmadi, 2021), investi-
gation of land-use changes based on farmers’ characteristics (Holtz and
Pahl-Wostl, 2012), and the exploration of groundwater management
strategies under climate change scenarios (Al-Amin et al., 2015).

However, developing a complex model endogenously considering
human and natural dimensions is a challenging task (An et al., 2021)
that demands considerable effort to conceptually and technically
establish information flow among agents and various sub-models. For
instance, Castilla-Rho et al. (2015) integrated groundwater flow equa-
tions into NetLogo (Wilensky, 1999) with their FlowLogo model, while
Jaxa-Rozen et al. (2019) linked NetLogo with MODFLOW/SEAWAT
models for more accurate geohydrological representations, including
contaminant transport in aquifers. More recently, Nozari et al. (2023)
integrated DSSAT, MODFLOW, and ABM to form an agent-based
hydro-economic model targeting a region overlying the northwest
High Plains Aquifer. Additionally, a recent review by Canales et al.
(2024) provides a summary of efforts to couple groundwater models
with human models framed as ABM.

Although the modeling frameworks discussed in the literature are
generally user-friendly, allowing users to create simulation models with
corresponding input files, the selected sub-models and information flows
(coupling structures) are typically not designed to be substituted or
altered, which could potentially limit their application or further
extension. Pynsim, a Python package developed by Knox et al. (2018),
addresses this gap. Demonstrated in Jordan case studies (Avisse et al.,
2020; Klassert et al., 2023), Pynsim enables users to create a node-link
network topology for customizing information flows among nodes.
However, it heavily relies on users’ technical experience to populate
each node with customized scripts or sub-models.

Our study aims to develop the Crop-Hydrological-Agent Modeling
Platform (PyCHAMP), a Python-based platform built on the MESA
agent-based modeling framework (Masad and Kazil, 2015). Designed to
enhance agricultural groundwater management modeling, PyCHAMP
features predefined components that reduce the technical skill re-
quirements while retaining flexibility for users to customize Python
scripts and sub-models (e.g., agent types). These components include
aquifers, crop fields, groundwater wells, finance, and behavioral actors
(i.e., farmers), as detailed in Section 2.1. The primary contribution of

PyCHAMP is its ability to serve as a container for both default and
customized 1) agent types that can vary in complexity and simulation
timestep and 2) models different in simulation procedures or coupling
structures. This versatility of PyCHAMP improves the code’s reusability
and expandability – a major challenge in agent-based modeling (Daly
et al., 2022) - by minimizing technical skill requirements needed to use
the platform. PyCHAMP does this by using built-in models while
allowing experienced users to populate PyCHAMP by developing new
agent types and models.

Within PyCHAMP, users have two main options: 1) select a model
and substitute different agent types registered in PyCHAMP or compare
different network topologies by modifying input files without additional
technical programming, or 2) develop a new model with a customized
simulation procedure using PyCHAMP, following the Mesa protocol.
These features facilitate the comparison of model structures, including
complexity, network topology, and social-behavioral theories. They also
enhance control over computational costs and model output uncer-
tainty, addressing key aspects highlighted in recent research (Lin and
Yang, 2022; Srikrishnan and Keller, 2021; Sun et al., 2016).

The Sheridan 6 Local Enhanced Management Area (SD-6 LEMA) in
western Kansas is used as our case study. Two key objectives of the case
study are 1) demonstrating how to apply PyCHAMP, including param-
eterization, components connectivity, and result analysis and interpre-
tation and 2) illustrating the impact of network topology changes
through adjustments in input files. In the SD-6 LEMA example, the
CONSUMAT behavioral framework (Jager et al., 1999) is assumed to
depict farmers’ behaviors, though other behavioral frameworks could be
adopted by users of PyCHAMP. We will discuss other features of
PyCHAMP and its future directions in Section 5. Overall, PyCHAMP
represents a significant advancement in environmental management
and modeling, linking individual decision-making to broader environ-
mental outcomes through a platform derived from Mesa.

2. Methods

2.1. PyCHAMP

The Crop-Hydrological-Agent Modeling Platform (PyCHAMP) is an
open-source Python package designed to analyze policies and assess
decision-making processes in agro-hydrological systems with complex
human-natural interplay. PyCHAMP is organized into five core compo-
nents: aquifer, field, well, finance, and behavior. Each component serves
as a container to accommodate corresponding agent types. A component
in PyCHAMP is called a module, which refers to a file containing Python
statements and definitions, such as those for classes and functions. An
agent type is programed as a class, which serves as a template for
creating objects (i.e., agents), encapsulating both attributes (data) and
methods (functions) for the objects. PyCHAMP includes five default
agent types (classes) for each corresponding component (module):
Aquifer, Field, Well, Finance, and Behavior, as illustrated in Fig. 1. An
additional Optimization class is provided to enhance flexibility in pro-
gramming agent types. PyCHAMP also comes with a model module to
store developed models. Currently, a SD-6 model that we built for the
SD-6 LEMA case study (Section 3) is available.

The development of PyCHAMP is based on the Mesa ABM framework
(Masad and Kazil, 2015), a comprehensive and well-supported Python
3-based framework that enables the rapid development of agent-based
models. The primary requirement for customizing agent types and
models within PyCHAMP is that they must inherit the basic agent (i.e.,
Mesa.Agent) and model (i.e., Mesa.Model) classes from Mesa, as detailed
in our online manual. The outputs of each agent type are fully
user-defined and often linked to a specific model design. Adopting Mesa
offers several advantages: i) it provides modularized features such as
schedulers and a browser-based interface for visualizations and ii) in-
tegrates seamlessly with Python’s robust data analysis capabilities (e.g.,
datacollector). The use of Mesa not only highlights PyCHAMP’s
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compatibility with the expanding Python scientific ecosystem but also
establishes PyCHAMP as a versatile platform ready for future develop-
ment extensions and integrations with other Python scripts and
sub-models.

Each default class (i.e., agent type) within PyCHAMP is crafted to
perform specific functions, outputting variables to fit the designed in-
formation flow of the SD-6 Model (Section 3.2): Aquifer, Field, and Well
classes employ distinct statistical relationships to evaluate changes in
groundwater levels, crop yields, and the energy demands of ground-
water pumping, respectively. The Finance class is designed with attri-
butes related to pricing and costs, facilitating the computation of profits
based on various farming practices and the resultant crop yields. The
Behavior class focuses on modeling farmers’ decision-making. Decision-
making within PyCHAMP is governed by a rule-based behavioral
framework, CONSUMAT (Jager et al., 1999), as it integrates multiple
commonly used psychological and economic theories (e.g., Theory of
Planned Behavior; Ajzen, 1991) into a single framework and has been
successfully used in the literature to describe farmers’ behaviors
(Acosta-Michlik and Espaldon, 2008; Mialhe et al., 2012; Vinh et al.,
2005). The decisions made under each associated CONSUMAT state are
framed as an optimization problem with different inputs, addressed
through the Optimization class (detailed in Section 2.1.5), where the
Gurobi optimization solver is employed. The functionalities and appli-
cations of each module and class are explained in the following sections,
with Section 2.2 focusing on employing PyCHAMP to simulate complex
interactions within human-natural systems.

Below, we first describe the general structure of PyCHAMP and the
types of data used to parameterize agent types for the corresponding
components. We then demonstrate the use of PyCHAMP through a
specific case study, where we detail the data and parameters specific to

that case.

2.1.1. Aquifer component
The aquifer component (module) is designed to simulate the change

in groundwater levels at each timestep. Currently, the supported agent
type in the aquifer component is called Aquifer class. The Aquifer class
simulates the annual groundwater level change using the Kansas
Geological Survey–Water Balance Method (Butler et al., 2018):

ΔWL=
I

Area× Sy
−

Q
Area× Sy

≈ baq − aaqQ (1)

where ΔWL is the annual groundwater level change [m], I is net inflow
[m3], and Q is the annual pumping amount [m3]. The term Sy is the
specific yield [-] and Area represents the area of the aquifer [m2]. For the
groundwater-dependent regions where Sy and I have negligible change
over time, like our SD-6 LEMA study area, we can represent I

Area×Sy and
1

Area×Sy with aaq and baq, respectively. The coefficients, aaq and baq, can be
estimated by linear regression on the annual groundwater level change
and water pumping data (Butler et al., 2018). The saturated thickness ST
[m]) of an aquifer can then be updated by:

STt = STt− 1 + ΔWLt− 1 (2)

where t represents a timestep of one year. The initial saturated thickness
(ST0 [m]) is given as an input. The Kansas Geological Survey-Water
Balance Method is a parsimonious approach for simulating the aquifer
response to pumping which is appropriate for our study region due to
the deep-water tables, relatively constant net inflows through time, and
relatively homogeneous aquifer conditions (Butler et al., 2020, 2023).

Fig. 1. Class diagram for PyCHAMP. The symbols +, (), and - represent a class’s attributes, methods, and core outputs, respectively. Customized agent types can be
added into corresponding PyCHAMP components (modules). The PyCHAMP online manual (http://dises-pychamp.readthedocs.io/) provides further documentation
detailing the different components/modules.
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2.1.2. Field component
The field component (module) is structured to simulate crop yields

and daily pumping rates at each annual time step. The agent type
currently available inside the field component is called Field class. The
Field class simulates the crop growth through empirical water-yield
production functions, a concept shown in (English et al., 2002), and
estimates the daily pumping rate from the annual withdrawal by a linear
relationship (McCarthy et al., 2020). Water-yield production functions
assume that the yield will increase with the amount of the applied water;
however, the yield will gradually decrease after reaching the optimal
amount of applied water (Fig. 2). The function can be estimated by
fitting the water-yield parabola to the observed crop yield and the
applied water data. The applied water (AWc [cm]) is the total irrigation
amount plus precipitation during the growing season. When applying
the water-yield production functions in a simulation, the irrigation
amount is determined through farmers’ decisions detailed in Section
2.1.5. To generalize the function, we normalize the yield by dividing it
by the vertices of the fitted parabolic curves. The fitted vertex represents
the maximum crop yield (Ymax [bu/m2]) used in the model. Similarly,
we adjust the applied water data by the maximum applied water (AWmax
[cm]) obtained from the data. Additionally, we introduce a lower cap for
the yield; if the yield falls below a threshold ymin [-] then the field has
zero crop yield. The threshold, ymin, can be determined from observa-
tional data (e.g., Text S1). Consequently, the yield (Y [bu/m2]) can be
calculated as follows:

Yc = yc × Yc,max (3)

{
yc =

(
ac • aw2

c + bc • awc + cc
)

if yc ≥ ymin,c
yc = 0 otherwise

(4)

awc =
AWc

AWmax,c
(5)

where the subscript c indicates crop-specific value. Terms y and aw are
normalized crop yield [-] and applied water [-], respectively. Co-
efficients ac, bc, and cc describe the shape of the water-yield production
function for crop c. PyCHAMP users have the option to divide a field into
several area splits for the purpose of growing mixed crops in one field.

The daily pumping rate is essential in calculating the energy
requirement in the well module. Therefore, we downscale the annual
withdrawal (PW [104 m3] to the daily pumping rate (q [104 m3/day])
by:

qw = ate • PWw + bte (6)

where the subscript w denotes the well-specific values. Terms ate and bte
are linear regression coefficients estimated from observed data for irri-
gation technology te.

2.1.3. Well component
The well component (module) is constructed to simulate energy use

for pumping at each time step. Currently, the provided agent type in the
well component is called Well class. The Well class calculates the energy
(E [petajoules; PJ]) required to elevate and pressurize the volume of
water pumped on an annual basis (McCarthy et al., 2020).

Ew = ρ • g • PWw • LT,w •
1
εp

× 10− 11 (7)

where ρ is the density of water [kg/m3], g is the acceleration due to
gravity [m/s2], εp [-] is the pumping efficiency, and 10− 11 is for unit
conversion [joule • 104 m3 to PJ •m3]. The total effective lift (LT [m]) is
equal to:

LT = LWT +(LCD + LWD) + LPR (8)

where LWT [m] denotes the lift from the water table to the ground sur-
face at the onset of the pumping season; LCD [m] represents the addi-
tional lift required due to the cone of depression forming adjacent to the
well screen throughout the pumping season; LWD [m] signifies the added
lift needed owing to drawdownwithin a well, a consequence of frictional
losses in and around the immediate area of the well; and LPR [m] reflects
the effective lift necessitated by the pressurization of water and the
losses in the piping associated with each type of irrigation system. We
adopt the Cooper-Jacobs method and well efficiency to dynamically
estimate the drawdown (i.e., LCD&WD = LCD + LWD) for each well. Well
efficiency (εw [-]) is the ratio of the drawdown at the aquifer formation,
located at the radius of the pumping well, to the total drawdown inside
the well (Charbeneau, 2006).

LCD&WD =
q

4πT

[

− 0.5772 − ln
(
r2Sw
4Td

)]

×
1
εw

(9)

where T is the transmissivity [m2/day], r is the well radius [m], Sw is the
specific yield of the formation in the vicinity of well w, and d is the time
pumped [day]. The transmissivity can be calculated by multiplying
hydraulic conductivity by the saturated thickness.

2.1.4. Finance component
The finance component (module) calculates the profit generated by

specific farming practices at each time step. The current agent type
available in the finance component is the Finance class. The Finance
class computes profits from crop sales (R [$]), energy expenditures (CE
[$]), the operational costs of irrigation technology (CT [$]), the opera-
tional costs of growing a certain crop (CC [$]), and the expenses asso-
ciated with transitioning to different irrigation systems (CdT [$]) or
crops (CdC [$]). Namely, the profit (Profit [$]) is calculated using the
following equation.

Profit=R − (CE +CC +CT +CdC +CdT) (10)

where R = Yc × Pc × AreaF and CC= Yc × cc × AreaF are proportional to
the crop yield. The terms Pc [$/bu] and cc [$/bu] are the unit crop price
and operational costs for crop c per yield, respectively. Field size is
denoted as AreaF [m2]. Term CT is a fixed cost depending on the specific
irrigation technology associated with each field. The impact of different
production conditions like groundwater levels is reflected in energy
expenditures, CE, like pumping cost. Transition costs, CdC and CdT, occur
only when there are changes in the crop type grown or the irrigation
technology used, respectively.

Fig. 2. Fitted yield-water production functions. The data points represent
observed yields for wheat (brown), corn (yellow), sorghum (maroon), and
soybeans (green) with corresponding management practices (irrigated: circles,
rainfed: crosses).

C.-Y. Lin et al.



Environmental Modelling and Software 181 (2024) 106187

5

2.1.5. Behavior component
The behavior component (module) is designed to simulate farming

decisions and actions, including irrigation depth, crop choice, irrigation
technology choice, and water allocation strategies. The current available
agent type in the behavior component is called Behavior class. Behavior
class is developed following the assumption of the CONSUMAT behav-
ioral framework with farmers’ decision-making process modeled as an
optimization problem. In this context, the specific farming decisions,
such as crop choice, irrigation technology, and irrigation depths, are
derived by employing an optimization model guided by a behavioral
actor’s objective. For instance, a farmer whose behaviors are driven by
profit maximization will optimize their farming decisions to increase
their profit returns. We organized this decision-making process into
another class, called “Optimization,” that allows for flexible adaptation
of constraints and objectives to form an optimization model. PyCHAMP
users can tailor the optimization model to fit a farmer’s unique attri-
butes, such as the field count, well count, available crop types, techno-
logical options, the time frame for decision-making (i.e., planning
horizon), and policies (i.e., water rights).

2.1.5.1. CONSUMAT behavioral framework. CONSUMAT is a multi-
theoretical behavioral framework used to understand and simulate in-
dividual and group behaviors, particularly in the context of consumer
behavior (Jager et al., 1999). It integrates insights from psychology,
sociology, and economics to explain how individuals make decisions and
how these decisions can be influenced by various factors that could be
tailored to fit specific cases. In our case, a behavioral actor’s behaviors
are categorized into four states according to satisfaction and uncer-
tainty. Satisfaction refers to the degree to which an individual’s needs
and desires are met. For example, higher profits may result in greater
satisfaction for a farmer. Uncertainty refers to the degree of uncertainty
an individual perceives regarding their knowledge or the outcomes of
their actions. For instance, a farmer might expect similar profits to those
of the previous year, but the actual profit can vary due to various
changing factors, including weather, market conditions, and farming
practices. If a farmer is certain that the profit will fall below their
satisfaction threshold, they will enter the deliberation state to optimize
farming decisions, such as crop choices and irrigation depth. Otherwise,
farmers will repeat the same practices (by entering the repetition state).
However, if uncertainty is higher than the threshold, farmers will seek
opinions from their neighbors and enter either social comparison or
imitation states, depending on their level of satisfaction. The thresholds
will be determined through calibration (see Section 3.3).

Mathematically, satisfaction (Sa) is defined as

Sa=1 − exp (− α× IC) (11)

where IC is the gain like profits from the individual consumption (e.g.,
irrigation). The sensitivity toward such gain is governed by a factor α. A
lower α means less sensitive to the given IC.

Uncertainty (Un), referring to the difference between the actual and
the expected gain (e.g., expected profit solved by the optimization), is
determined by taking the satisfaction anticipated in the previous time-
step (Ŝat− 1) and subtracting the actual satisfaction experienced in the
current timestep (Sat).

Unt = Ŝat− 1 − Sat (12)

Ŝat =
1
H
∑H

y=1
Ŝa

y
t (13)

where Ŝat, is the averaged expected satisfaction over the planning ho-
rizon, H [year], and Ŝa

y
t is the expected satisfaction for each projected

year y from year t within the planning horizon. The four behavioral
states in the CONSUMAT framework are repetition, deliberation,
imitation, and social comparison. Within each state the behavioral actor

(i.e., farmer) implements specific farming strategies like changing crop
choice, irrigation technologies, and irrigation depth, as described in
Table 1. We adhere to CONSUMAT’s guidelines to formulate crop choice
and irrigation technology decisions that typically only change under
some circumstances. For example, droughts may motivate farmers to
upgrade irrigation technology or grow less water-intensive crops. On the
other hand, irrigation depth is annually adjusted based on climate
conditions, subject to the crop choice and irrigation technology de-
cisions. Hence, we optimize the irrigation depth in all CONSUMAT states
to reflect these dynamics.

The CONSUMAT states for the initial timestep (t = 0) are determined
using the simulation results of the initial year (i.e., prior to the start
year), where Un0 is calculated by Ŝa0 − Sa0 instead of Equation (12). In
this initial step of the simulation, all farming decisions like crop types
are given as inputs and only irrigation depths are optimized. Conse-
quently, Sa0 and Un0 will be available for the CONSUMAT state
assignment for the start year, t = 1.

2.1.5.2. Optimization class. The Optimization class used in the behavior
module constructs an optimization problem that mirrors a farmer’s at-
tributes and their current behavioral state with a given timeframe (i.e.,
planning horizon). This class generates a mixed-integer nonlinear
problem, containing the physical constraints outlined in Sections 2.1.2
to 2.1.4. These constraints are incorporated through the class’s methods,
such as setup_constr_field(), setup_constr_well(), and setup_constr_finance().
Additionally, setup_constr_wr() permits the PyCHAMP user to impose
constraints (based on policies) on irrigation depth across all selected
fields within a specified timeframe. The Optimization class streamlines
the creation of optimization problems for farmers possessing diverse
assets. For instance, by invoking setup_constr_field() twice, it’s

Table 1
Definition of CONSUMAT states implemented in PyCHAMP.

State Condition Procedure

Repetition Sa > Sathres • Repeat the chosen crop choice and irrigation
technology from the previous timestep.

• Optimize irrigation depth to maximize
satisfaction (i.e., profit or yield).

Un ≤ Unthres

Deliberation Sa ≤ Sathres • Optimize crop choice, irrigation technology,
and irrigation depth to maximize satisfaction (i.
e., profit or yield).

Un ≤ Unthres

Social
comparison

Sa ≤ Sathres • Compare satisfaction (i.e., profit or yield) of
farmer with farmer neighbors. The farmer will
mimic the strategy of the neighbor with the
highest satisfaction. This neighbor will also be
stored in the memory for the imitation state.

• Evaluate if the generated anticipated
satisfaction from the selected neighbor farmer
surpasses the present level of the farmer
satisfaction.

• If yes, then the farmer adopts the crop choice
and irrigation technologies used by the selected
neighbor farmer. Otherwise, no changes will be
made.

• Optimize irrigation depth to maximize
satisfaction (i.e., profit or yield).

Un > Unthres

Imitation Sa > Sathres • Recall the selected neighbor from its memory,
otherwise randomly select one neighbor from
its neighbor pool.

• Evaluate if the generated anticipated
satisfaction from the selected neighbor farmer
surpasses the present level satisfaction of the
farmer.

• If yes, then the farmer adopts the crop choice
and irrigation technologies used by the selected
neighbor farmer. Otherwise, no changes will be
made.

• Optimize irrigation depth to maximize
satisfaction (i.e., profit or yield).

Un > Unthres

C.-Y. Lin et al.
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straightforward to incorporate two unique sets of constraints and deci-
sion variables into an optimization problem, tailored for a farmer’s two
separate fields. Given that the groundwater level changes are the result
of the total water withdrawal by a group of farmers, the projected
groundwater levels of an aquifer will be used by the optimization model
for each farmer to make their individual decisions. Key decision vari-
ables within the Optimization class include farmers’ choices regarding
irrigation depth, crop types, and irrigation technologies. PyCHAMP
users can assign the objective function to maximize profit or yield via the
setup_obj()method. The optimization problem is solved using the Gurobi
solver, available for free under an academic license.

2.2. Building a simulation model using PyCHAMP

A simulation model can be created in PyCHAMP by leveraging the
Mesa ABM framework. The code structure is depicted in Fig. 3, where
the development of a Model class is inherited from Mesa.Model. The
initialization process (__init__()method) involves setting up various agent
objects, including but not limited to, Aquifer, Field, Well, Finance, and
Behavior agents. These agents are then incorporated into a Mesa
scheduler object for subsequent simulation. In addition, a Mesa Data-
collector object is created to track output variables of interest, both at the
model level and the individual agent level throughout the simulation.

The core of the simulation is the step method defined within the
model class. This method is tasked with the regular update of agent
attributes with each timestep, such as updating the crop price to reflect
current market conditions. By executing the command scheduler.step
(agt_type = “Behavior”), the simulation activates the step method for
each agent classified under the “Behavior” agent type (e.g., field, well,
and finance agents), allowing for the focused simulation of specific
subsets of agents while still capturing other agents’ dynamics through
the Mesa framework. An instance of the customModel class is created to
initialize the simulation. The simulation runs by looping through the step
method. Following agent updates, the model computes the total water
withdrawal from the aquifer and invokes the aquifer objects’ step
method to determine the resultant changes in groundwater levels.
Outputs for the current timestep are then gathered via datacollector.
collect(). Finally, we end the simulation by calling model.end(), which
defines actions required before closing the program for, e.g., releasing
memory.

3. PyCHAMP implementation: SD-6 LEMA case study

We showcase PyCHAMP’s analytical capabilities in revealing the co-
evolved dynamics of human and natural systems through a case study of
the SD-6 LEMA, a groundwater conservation area in the High Plains
Aquifer region of northwestern Kansas (Fig. 4). This case study serves
two primary objectives: 1) demonstrating the effective application of
PyCHAMP, including parameterization, components connectivity, and
result analysis and interpretation, and 2) illustrating the impact of
network topology changes through adjustments in input files.
Throughout these demonstrations, we explore the environmental and
socio-economic factors that contribute to the effectiveness, adaptability,
and resilience of groundwater conservation policies. Notably, the anal-
ysis incorporates a specific behavioral assumption, CONSUMAT, to
examine how farmer behaviors’ dynamics influence policy outcomes.

3.1. Sheridan-6 Local Enhanced Management Area

The SD-6 LEMA covers 255 km2 (99 mi2) in western Sheridan County
and eastern Thomas County in Kansas, an area characterized by exten-
sive groundwater irrigation, virtually no surface water, and limited
groundwater recharge (Drysdale and Hendricks, 2016; Whittemore
et al., 2023). This area falls within the jurisdiction of the Northwest
Kansas Groundwater Management District No. 4 (KDA, 2013). The main
crops grown in SD-6 LEMA are corn (averaging 74.1% of all irrigated
acreage in the SD-6 LEMA for the period 2013–2020), soybean (9.3%),
sorghum (8.8%), and wheat (5.1%) (USDA-NASS, 2022).

The Local Enhanced Management Area (LEMA) program was
approved by the Chief Engineer of the Kansas Department of Agricul-
ture’s Division of Water Resources in late 2012 (K.S.A. 82a-1041, 2012).
It was established as a tool for Groundwater Management Districts to set
goals and implement measures to aid in water conservation (Marston
et al., 2022). The SD-6 LEMA was the first of its kind, initially approved
for a 5-year period from 2013 to 2017, and subsequently renewed for the
period 2018–2022 and most recently for the period 2023–2027. The
program was a collaborative effort involving local farmers. They agreed
to reduce water use by 20% from their regional historical average be-
tween 2002 and 2012, allocating approximately 140 cm (55 inches) of
applied water for use over a 5-year period (Griggs, 2021). The farmers’
collaboration was key to the success of the program, as multiple studies
have found that the irrigation water use was ~25% less during the LEMA
(2013–2022) than the average from 2005 to 2012, surpassing the initial
water use reduction goal and resulting in a ~65% reduction in the rate

Fig. 3. A pseudocode of a general structure for a PyCHAMP simulation model. Field, well, and finance agents are executed within their respective behavior agents, to
which they are assigned during initialization based on user-defined inputs.
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of groundwater depletion (Butler et al., 2018; Butler and Johnson, 2024;
Deines et al., 2021; Drysdale and Hendricks, 2018; Whittemore et al.,
2023). Irrigation water use reductions were primarily obtained via im-
provements in irrigation efficiency (72% of total savings), with addi-
tional savings from shifts to lower water use crops (19%) and reductions
in irrigated acreage (9%) (Deines et al., 2019), though more recently
irrigated area has begun to increase (Zipper et al., 2024).

3.2. Data and SD-6 model setup

The SD-6 Model implements all default agent types across five
components in PyCHAMP. We use 2007 MODFLOW simulated data
(Macfarlane and Wilson, 2006) to initialize saturated thickness within a
single aquifer object. The aquifer’s inflow is relatively constant, where
coefficients aaq and baq from Equation (1) are set to 0.000376 and 0.767,
respectively (Butler et al., 2018). We can calculate the groundwater
levels using Equations 1 and 2. Farmers, modeled as behavior agents,
make decisions about crop choice and irrigation depth over a 5-year
planning horizon to maximize their averaged profit within this time-
frame (i.e., the CONSUMAT objective). The annual profit is calculated
through Equation (10), where the energy cost is based on the projected
groundwater level. The 5-year planning horizon mirrors the LEMA
governance timeframe. During the optimization at each time step, the
crop choice remains fixed for the entire planning horizon while irriga-
tion depth changes annually. In the SD-6 Model, we chose to simplify the
optimization process by not incorporating uncertainties related to crop
prices and future precipitation that farmers anticipate (i.e., their
perceived available precipitation), assuming that both remain constant
across the planning horizon. Addressing these uncertainties would
necessitate a shift to a multi-stage stochastic optimization framework,
which is not essential for our demonstration goal as it would signifi-
cantly increase both computational time and memory requirements.
However, we do integrate future groundwater levels into the optimiza-
tion by projecting these levels using a linear function based on the
average rate of change observed over the past five years. Also, since
optimization occurs annually, only the decisions of the first year of the
optimized results will be implemented, and the rest of four years will be
discarded. The SD-6 Model only considers center-pivot LEPA (Low En-
ergy Precision Application) irrigation technology, given its prevalence
in the region (covering over 85% of the irrigated area from 2010 to over

96% in 2021). Crops simulated in this study include corn, sorghum,
soybean, and wheat, grown on typical 50-ha (5 × 105 m2) fields. A
farmer can also choose to fallow a field. A total of 336 fields within the
SD-6 LEMA were selected for inclusion in the model (Fig. 4). The fields
that were not selected are typically rainfed pastures, which will not
affect our study on groundwater management.

Each farmer is assumed to manage one field and a well in its center.
The heterogeneous aquifer characteristics assigned to each well, such as
specific yield, hydraulic conductivity, and water level depth, are
determined using spatially interpolated values from Water Information
Management and Analysis System’s well data (WIMAS; indicated by
stars in Fig. 4; DWR, & KGS, 2023). Other well properties, like well
radius, are from the WIZARD statewide well database (KGS, 2023). To
calculate energy consumption for pumping, we assume a pumping ef-
ficiency of 0.77, a well efficiency of 0.67, and a typical well radius of 8
inches (0.2032 m) in the region (DWR, & KGS, 2023). Additionally, we
define the pumping season to be 90 days based on typical practices in the
region (Table S3). In scenarios where a farmer owns multiple fields,
neighbors of the farmer are defined as other farmers who have at least
one field center falling within a 1-km radius of one of the fields owned by
the farmer in consideration.

Along with well characteristics, additional input data includes pre-
cipitation, crop prices, energy price, initial crop types, and water-yield
production functions. Precipitation data is sourced from gridMET
(Abatzoglou, 2013) with each field being assigned to the nearest grid
data. The Kansas Farm Management Association (KFMA) Enterprise
Reports provide annual crop prices (Fig. S3; KFMA Enterprise Reports,
2023). Most farmers use electric pumps and we set the electricity price at
$0.10 per kilowatt-hour (Find Energy LLC, 2023). Initial crop types are
determined using the Cropland Data Layer (USDA-NASS, 2022),
leveraging the central location of each field for extraction. Crop yields
are gathered from the USDA-NASS (2022) for the selected crop types.
Yield data from RMA (2023), groundwater and irrigation data from
WIMAS (DWR, & KGS, 2023), and gridMET precipitation (Abatzoglou,
2013), are used to develop the water-yield production functions. The
methodology for curve fitting is detailed in Text S1.

The simulation spans from 2008 to 2022, incorporating a 5-year pre-
LEMA phase and two LEMA cycles (2013–2017 and 2018–2022) of 5-
years each. The simulation schema is shown in Fig. 5. In each itera-
tion, the model will loop over each component in PyCHAMP and update

Fig. 4. The SD-6 LEMA in western Kansas. Red triangles show gridMET weather data (Abatzoglou, 2013), yellow stars mark WIMAS wells (DWR, & KGS, 2023), and
blue circles represent simulated fields used by SD-6 Model, with darker blue indicating deeper average groundwater levels over 2008 to 2022.
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corresponding agents’ attributes that will influence their behavior in the
next iteration, demonstrating the co-evolution of the human-water sys-
tem as they respond to each other over the simulation. We start by
initializing the SD-6 Model, incorporating input settings on weather,
aquifers, fields, wells, finances, and farmers. Each simulation iteration
begins with an update of the crop prices for the given year, reflecting the
variable nature of agricultural markets. Subsequently, we refresh the
weather data for each field to prepare for subsequent processes.

Farmer agents assess the perceived available precipitation for their
fields using the following empirical formula derived from our own
analysis and understanding of the subject, which targets to capture the
bias in farmer agents’ perception:

PAWc =(1 − fc) • pc + fc • Precc (14)

pc =TruncatedNormal− 1c
(
qu

⃒
⃒
⃒ μc, σ2

c , atn,c, btn,c
)

(15)

where PAWc represents the perceived available precipitation, pc is the
perceived risk, and Precc is the perfect precipitation forecast for crop c
during its growing season taken from gridMET (Abatzoglou, 2013)
precipitation. The forecast confidence, fc, subject to calibration, ab-
stracts various factors such as historical accuracy, personal experience
with forecast reliability, and the perceived credibility of forecast sour-
ces. This variable also plays a role in correcting system bias that could
occur within the calibration when multiple data sources were used to
form the evaluation matric. The static perceived risk is determined by
the inverse truncated normal distribution at a given quantile qu that is

also subject to calibration. Parameters μc and σ2
c are the mean and

variance estimated from the historical precipitation data for crop c from
2008 to 2022. The lower bound, atn,c, is set to be zero and the upper
bound, btn,c, is set to be the historical maximum precipitation between
2008 and 2022.

We stochastically assign fields as rainfed, based on the historical
frequency data of each field being rainfed from 2008 to 2021. However,
the optimization may still output zero irrigation for fields that are not
designated as rainfed if such a decision maximizes profit. For example,
this could occur in years with exceptionally high precipitation where
irrigation is not necessary. This approach is adopted due to our limited
understanding of the factors influencing rainfed vs. irrigated field
designation, which often extends beyond mere profitability. Future
versions of PyCHAMP could replace this with an explicit representation
of irrigation status decision-making to incorporate this into the
modeling framework.

Following the determination of a field’s irrigation status, the model
checks the status of each water right setting and adjusts as necessary. For
example, the LEMA groundwater allocation (55 inches in a 5-year time
window) will only be activated starting from 2013. After these updates,
the model loops through each farmer agent to determine their CON-
SUMAT states, optimize farming decisions, and calculate yields, energy
used, and profits.

The model then computes the total groundwater withdrawal from all
farmers’ applied irrigation depths. Groundwater withdrawals in turn
lead to groundwater level changes. A data collection process stores all
relevant information before proceeding to the next iteration until the

Fig. 5. Simulation schema of the SD-6 Model, developed with PyCHAMP modules within the Mesa agent-based modeling framework. The schema delineates the
passing of data between components (modules) and agent types (classes), as well as the decision-making procedure of farmer agents.
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simulation has reached its terminus. Text S2 provides additional
description of the ABM following the Overview, Design concepts, De-
tails + Decision (ODD + D) protocol (Müller et al., 2013).

3.3. Calibration and validation

We performed a calibration and validation of our model. The simu-
lation was divided into a calibration period (2008–2017) and a valida-
tion period (2018–2022). Four parameters were calibrated for the SD-6
Model: qu, fc, Sathres, and Unthres (shared across all farmers). We adopted
a particle swarm optimization algorithm (Miranda, 2018), where fifteen
particles were initiated. The initial values for all four parameters were
sampled by a uniform distribution within a 0 to 1 range. The objective
aims to minimize the weighted root mean square error (RMSE), calcu-
lated as follows:

RMSE=0.5×
(
RMSEst + RMSEw

2

)

+0.5×

(∑
c∈cropsRMSEc

Nc

)

(16)

where RMSEst is the root mean square error of the aquifer’s saturated
thickness, normalized by its historical maximum and minimum values.
Similarly, RMSEw is the root mean square error of the normalized total
groundwater withdrawals. The term RMSEc denotes the root mean
square error of the distribution ratio of crop c, and Nc is the number of
crop types. Here, we consider corn, sorghum, soybean, wheat, and
fallow (thus, Nc = 5). Each particle’s evaluation involved repeating the
simulation three times with different random seeds (i.e., 3, 56, and 67)
to account for the model’s stochastic nature. The corresponding particle
with parameter values, which yielded the lowest RMSE among the three
simulations is then selected. Based on exploratory analysis, the particle
swarm optimization algorithm’s inertia, cognitive, and social hyper-
parameters were set at 0.5, 0.5, and 0.8, respectively. The algorithmwas
terminated when there was no improvement in 25 consecutive
iterations.

3.4. Numerical experiments using the SD-6 model

To demonstrate the capabilities of PyCHAMP, we designed four nu-
merical experiments tailored to our dual objectives of 1) demonstrating
how to apply PyCHAMP, including parameterization, components con-
nectivity, and result analysis and interpretation and 2) illustrating the
impact of network topology changes through adjustments in input files.
The first three experiments focus on the effective application of
PyCHAMP, emphasizing parameterization, connectivity of system
components, and nuanced analysis and interpretation of results. This
allows us to rigorously evaluate the environmental and socio-economic
factors underpinning the effectiveness of the LEMA policy, assuming the
CONSUMAT framework. The fourth experiment addresses the impact of
network topology changes by adjusting solely the input files without
requiring additional coding. This experiment aims to reveal how mod-
ifications in network configuration influence farming decisions and
water conservation behaviors, thereby providing deeper insights into
the dynamic interplay between human activities and natural systems.
Through this experiment design, we aim to both demonstrate
PyCHAMP’s utility and enhance our understanding of complex human-
natural interactions.

3.4.1. Experiment 1: Quantifying the effectiveness of a water conservation
policy

This experiment assesses the impact of the LEMA policy on farmer
cropping patterns and irrigation decisions, and ultimately, the under-
lying aquifer. It is difficult to isolate the LEMA policy’s effectiveness
from observations alone due to uncontrolled variability in external
variables, such as climate variability and economic factors. Our model
allows for a more controlled experiment where we can hold external
variables constant so to isolate and quantify the impact of the LEMA

policy on irrigation applications, cropping patterns, and aquifer levels.
More specifically, the difference between with and without LEMA policy
is that the pumping is not capped to 55 inches during the 2013–2017 and
2018–2022 periods in the “No LEMA” scenario.

3.4.2. Experiment 2: Local sensitivity analysis on four calibrated
parameters

Recognizing the significance of behavioral components in our model,
we conducted a local sensitivity analysis on the four calibrated param-
eters: qu, fc, Sathres, and Unthres. We perturb these parameters within a

±0.07 range, at 0.01 intervals, to understand their influence on the
model’s outcomes.

3.4.3. Experiment 3: Fixed CONSUMAT state to understand behavioral
dynamics in SD-6 model

To explore the impacts of behavioral dynamics, we set all farmers to
operate under a fixed CONSUMAT state—either repetition, deliberation,
imitation, or social comparison—throughout the simulation. This setup
allows us to examine the effect of uniform behavioral strategies on
model results, offering insights into the diverse ways farmers make de-
cisions under varying conditions.

3.4.4. Experiment 4: Evaluation of pooling of groundwater and land
allocations

This experiment introduces a scenario where a farmer manages three
fields and three associated wells, compared to managing only one field
and well in the previous experiments. We grouped three nearby fields
together randomly and assigned them to a single farmer. Consequently,
the number of farmers in this scenario (112) is one-third that of the
original calibrated model. To assign fields and wells to a farmer, we
merely need to update a farmer’s input—a dictionary in
Python—without modifying the underlying code. Specifically, we assign
lists of corresponding field ids and well ids to the dictionary keys “fiel-
d_ids” and “well_ids,” respectively. Further details are available in our
online manual. In addition to demonstrating the platform’s flexibility in
altering network topology, this scenario explores how farmers might
allocate irrigation water across multiple fields and its implications for
groundwater sustainability, subject to a maximum irrigation depth of 24
inches (60.96 cm) per field, as determined by pre-LEMA water rights
(Kansas Department of Agriculture Division of Water Resources & U.S.
Geological Survey, 2011).

4. Results

4.1. Calibration and validation

The RMSE, a measure that ranges from 0 (ideal) to infinity, indicates
a value of 0.078 during the calibration period (2008–2018) and 0.092
for the validation period (2019–2022). These close values suggest that
the calibrated model is effectively capturing the system’s dynamics
without being overfitted.

In-depth analysis, illustrated through Fig. 6a and b, and 7, demon-
strates the model’s ability to represent key variables such as saturated
thickness, groundwater withdrawal, and crop ratios. The RMSE for each
variable can be found in Table S4. These results highlight the co-evolved
dynamics between human behaviors (e.g., crop selection and irrigation
practices) and environmental factors (e.g., groundwater level and crop
yield) in response to climate, regulatory, and economic changes. Over-
all, the model successfully represents the general trends observed in the
SD-6 LEMA for each variable. None of the farmers in the model opt for
fallowing at any point, unlike the actual SD-6 LEMA area, where 8.6% of
farm fields are fallowed on average. The divergence between observa-
tions and our model suggests that decisions to leave fields fallow are
likely not motivated by short-term profit but rather by crop rotation to
ensure the long-term sustainability of the fields, an aspect not directly
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accounted for in our model. Fig. 8 reveals the spatial distribution of crop
choice frequency from 2008 to 2022, demonstrating the individual-level
results from PyCHAMP. The spatial patterns of crops were driven by the
initial conditions, as well as the search radius used by farmers when
searching for potential adaptative farming measures to mimic among
their neighboring farmers. Given the complex dynamics behind the re-
sults, the actual causal relationship will require a more detailed inves-
tigation in a future study.

The versatility of PyCHAMP is further highlighted through its
capability to output additional dynamics, such as energy usage, profit,
and CONSUMAT state ratios, showcased in Fig. 6c, d, and 6e, respec-
tively. The findings reveal that profit per irrigated depth improved
during the second LEMA cycle, coinciding with an increase in rainfed
fields, while the energy required for water pumping stabilized alongside
the saturated thickness during the LEMA period.

The CONSUMAT state ratios represent the proportion of farmers in
each CONSUMAT state at a given time step. The resulting state dynamics
over time (Fig. 6e) shed light on the behavioral tendencies of farmers,
predominantly reflecting states of imitation and repetition. These states
are indicative of a generally high level of satisfaction (i.e., Sa > Sathres)
among farmers. The alternations between imitation and repetition are
primarily caused by uncertainty (i.e., Un), predominantly due to
weather variations and crop price fluctuations. During dry years like
2010, 2012, 2020, and 2022, sudden changes in precipitation create
high uncertainty and reduce satisfaction, motivating some farmers to
enter the social comparison state (peaks in pink lines). The occasional
entry into the deliberation state by a minority of farmers highlights the
importance of initial heterogeneity in crop distribution, as most farmers
adjust their farming behaviors based on their neighbors’ experience. In
other words, farmers showed two primary pathways to change their crop
choices: they either through the optimization under the deliberation
state or learn from their neighbors’ experiences under the social com-
parison and imitation state. Given that most farmers looked to imitate
their neighbor when uncertain, if the heterogeneity in crop distribution
is low, farmers have fewer opportunities to learn from diverse crop
choices among neighbors (i.e., all neighbors grow the same crops),
which leads to decreased adaptability.

4.2. Experiment 1: Quantifying the effectiveness of a water conservation
policy

With the model’s credibility established through validation among
multiple variables, we next explored the policy insights offered by the
SD-6 Model, particularly its capacity to endogenously simulate human
behaviors within the context of water conservation policies.

When simulating the 2013–2022 period without LEMA constraints,
the model simulates a decrease in water withdrawals (red line in Fig. 9),
though to a lesser extent than under LEMA conditions (blue line in
Fig. 9). The reduction in water use under the No LEMA scenario might be
due to some of the simplifying assumptions used in the model. For
example, the SD-6 Model’s reliance on simplified statistical assump-
tions, such as water-yield production functions, might not fully encap-
sulate the complexities of real-world scenarios, since improving
irrigation efficiency would result in decreased applied water but no yield
reductions if carried out effectively. This is particularly evident in the
discrepancies between observed and simulated data during periods of
high precipitation, indicating areas for future refinement to enhance the
model’s fidelity.

However, factors beyond policy, such as climatic conditions and
economic shifts, can influence water use behaviors and may have
contributed to the changes simulated by our model. The drought of
2012, coupled with relative price increases for crops like sorghum,
soybeans, and wheat compared to corn (detailed in Fig. S3), could have
encouraged some farmers within the no LEMA simulation to adopt less
water-intensive crops, a behavior captured in Fig. S4. The use of the
CONSUMAT framework within our model suggests that once farmers

Fig. 6. Time series of a) aquifer saturated thickness, b) groundwater with-
drawal, c) average energy used per irrigated depth, d) average profit per irri-
gated depth, and e) CONSUMAT state ratios from 2008 to 2022. The thick solid
lines represent simulation results from the calibrated model, while thin solid
lines represent the stochastic simulation results (20 realizations), and black
dashed lines indicate the observed values. The shaded regions denote periods
with annual precipitation lower than the average over the period from 2008 to
2022. The vertical red dashed line represents the start of the first LEMA period
in 2013, while the dashed gray line is the start of the second LEMA period in
2018. The vertical dash-dot line separates the calibration and valida-
tion periods.

Fig. 7. Time series of crop ratios from 2008 to 2022, including a) corn, b)
sorghum, c) soybeans, d) wheat, and e) fallow. The thick solid lines represent
simulation results from the calibrated model, while thin solid lines represent
the stochastic simulation results (20 realizations), and black dashed lines
indicate the observed values. The shaded regions denote periods with annual
precipitation lower than the average over the period from 2008 to 2022. The
vertical red dashed line represents the start of the first LEMA period in 2013,
while the dashed gray line is the start of the second LEMA period in 2018. The
vertical dash-dot line separates the calibration and validation periods.
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shifted to new crop choices due to external shocks, they were likely to
adhere to these choices in the absence of further disruptions. The
decrease in water withdrawals between the pre-LEMA (solid black line)
and LEMA (solid blue line) was notable but since there are different
economic and climatic conditions during these periods, it is difficult to
assess the degree of those different factors that contribute to the change
within the system. Though largely aligned, the modeled relationship
between precipitation and withdrawals deviates from observations in
some instances, especially during wet periods (Butler et al., 2020).
Overall, however, the SD-6 Model built by PyCHAMP successfully
captured the reduction in water use caused by the LEMA.

4.3. Experiment 2: Local sensitivity analysis on four calibrated
parameters

Four parameters were calibrated in the SD-6 Model: quantile of
perceived risks (qu), forecast confidence (fc), satisfaction threshold
(Sathres), and uncertainty threshold (Unthres). The quantile of perceived
risks (qu) and forecast confidence (fc) mainly control the vertical shift of
the withdrawal time-series. Meanwhile, the CONSUMAT thresholds for
satisfaction (Sathres) and uncertainty (Unthres) predominantly influence
crop choice patterns. The sensitivity of the model outputs, such as water
withdrawal, corn ratios, and the saturated thickness in 2022, to these
behavioral parameters is shown in Fig. 10. The variables were normal-
ized by each variable’s mean value, which are called the response ratios.
Corn was selected to represent the sensitivity of the crop ratios as corn is
the most water-intensive and widely-grown crop compared to the
others.

The analyses of boxplots in Figs. 10a and b reveal that perturbations

Fig. 8. Spatial distribution of crop choice frequency from 2008 to 2022 for a) corn, b) sorghum, c) soybeans, and d) wheat, based on model results.

Fig. 9. A scatter plot showing the simulated results of three scenarios 1) pre-
LEMA period (black), 2) LEMA period with LEMA policy (blue), and 3) a
counterfactual LEMA period without LEMA policy (red). Results from each year
are shown as dots, with regression lines calculated by the least square error and
the bands indicating the range of ± two standard deviations over 20 re-
alizations. The dashed lines are the regression lines using observations (+) for
pre-LEMA and LEMA periods.

Fig. 10. Boxplots representing the variance in response ratios for, a) with-
drawal, b) corn ratios, and c) saturated thickness in 2022 of the calibrated SD-6
Model (zero error bars), compared to the mean values. The local sensitivity
range is set at ±0.07, in intervals of 0.01, for four calibrated parameters: the
quantile of the perceived risks (qu), forecast confidence (fc), and CONSUMAT
thresholds for satisfaction and uncertainty (Sathres and Unthres). Diamonds
are outliers.
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in the parameters qu and fc induced relatively minor variances in model
outputs throughout the simulation, as evidenced by the more condensed
boxplots. In contrast, adjustments to the CONSUMAT thresholds not
only heighten the sensitivity of the model outputs but also introduce a
notable degree of variability across different years. Fig. 10c illustrates
the cumulative effects of various parameters on the saturated thickness
as of 2022. Given it is the results of a specific year (i.e., 2022), there are
no error bars associated with it. The findings align with Figs. 10a and b
revealing that CONSUMAT thresholds (Sathres and Unthres) are more
influential to the simulation outcomes. This variability underscores the
significant role that the CONSUMAT thresholds play in driving the dy-
namics of the model’s outputs.

4.4. Experiment 3: Fixed CONSUMAT state to understand behavior
dynamics in SD-6 model

To further explore the influence of CONSUMAT framework, we
examined how the system responds to farmers’ behaviors when they are
in a fixed CONSUMAT state throughout the simulation, as shown in
Fig. 11.

First, we observe that the saturated thickness with a fixed repetition
state is very close to the output from the calibrated model (Fig. 11a), but
the underlying dynamics are different. Given no crop changes occur
under the repetition state, the initial corn ratio (65.5%) remained the
same throughout the simulations (Fig. 11b). Additionally, the irrigation
depth with fixed repetition state was higher for corn and soybeans but
lower for sorghum and wheat compared to the baseline model.

Second, the slight fluctuation in the corn ratio under a fixed imitation
state, as seen in Fig. 11b, is attributed to farmers not having identified a
neighbor to mimic yet. Consequently, they randomly selected a neigh-
bor’s crop choice to follow, as per our model’s setting. The small fluc-
tuations in the corn ratio accumulated into a distinct pattern in saturated
thickness as water withdrawals varied between fixed repetition and
imitation states, driven by the differences in the corn ratios. Specifically,
a slightly lower corn ratio during the pre-LEMA period (2008–2012)
reduces the withdrawal, especially during the dry years, leading to a
lower decline in the saturated thickness.

Lastly, we found that results with fixed deliberation and social
comparison states display almost identical patterns of saturated thick-
ness in Fig. 11a, despite the distinct corn ratio patterns observed in
Fig. 11b. In both scenarios, the corn ratio rapidly approached one within
the first couple of years, since corn was the dominant and most profit-
able crop under sufficient irrigation conditions. However, the pattern of

the corn ratio varied after this initial period. Farmers under the delib-
eration state reoptimized their crop choice annually, resulting in a lower
and more variable corn ratio during dry years (shaded areas) and a
higher ratio during wet years, as shown in Fig. 11b. In contrast, under
the fixed social comparison state, corn dominated the region, making it
less likely that farmers would learn from neighbors who grow crops
other than corn. Therefore, the corn ratio remained close to 1. The
change in saturated thickness depended on the amount of irrigation. In
the fixed deliberation scenario, corn was the only crop irrigated. The
yield of irrigated corn was around 97.35% of its maximum potential,
which indicates sufficient irrigation. In the social comparison scenario,
the amount of irrigated corn fields was almost the same as in the
deliberation scenario. We also found the yield ratio to its maximum
potential of the irrigated corn fields between deliberation and social
comparison scenarios were identical. This means the water withdrawal
was almost the same, leading to an overlap in patterns of saturated
thickness. The differing dynamics between these two scenarios can be
attributed to the crop choices in rainfed fields, which did not affect the
groundwater level in our model.

4.5. Experiment 4: Evaluation of pooling of groundwater and land
allocations

This experiment demonstrates the adaptable nature of model setup in
PyCHAMP. By treating various elements such as fields, wells, aquifers,
finances, and farmer behavior as interconnected agents within a
network determined by input data, we can adjust the model setup with
no changes to the source code. In this experiment, we explored a sce-
nario comparing the impact of a behavioral actor managing three fields
instead of the single field in the calibrated model. This adjustment
allowed farmers to allocate water across multiple fields strategically,
preferentially pumping from more productive wells and focusing their
limited water resources on irrigated corn fields while choosing less
water-intensive crops like sorghum, soybeans, wheat, or even leaving
some fields fallow.

The results, illustrated in Fig. 12a, show a tendency among most
farmers to adopt a mixed-cropping approach, balancing between
maximizing corn cultivation and integrating water-saving crops to
optimize water use. This mixed strategy led to higher profits during dry
years (Fig. 12b), though it results in lower profits in wetter years.
Economically, this approach significantly reduced profit disparities
among farmers, as shown in Fig. 12c. Another observation is that the
inclination to grow corn across all three fields increased, correlating

Fig. 11. Simulated a) saturated thickness and b) corn ratio under fixed CONSUMAT states: repetition (orange), deliberation (purple), imitation (cyan), and social
comparison (pink). The baseline (black) is represented by the simulation of the baseline model. Shaded areas denote periods with annual precipitation lower than the
average over the period from 2008 to 2022.
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with the period of higher rainfall from 2015 to 2019 and the subsequent
rise in corn prices post-2020. This trend echoes findings from the cali-
brated model, as well as observation, as seen in Fig. 7. When land and
water resources are pooled, water withdrawals largely increase during
dry years and decrease during wet years when compared to the man-
agement of a single field.

While the experiment highlights PyCHAMP’s adaptability, it also
reveals that computational time can escalate dramatically, ranging from
a few minutes in a single-field scenario to several hours in a three-field
scenario, due to the increased complexity of the optimization problems.

5. Discussion

5.1. Synthesis across four numerical experiments

The SD-6 LEMA is a uniquely successful groundwater conservation
area, with significant reductions in pumping that were achieved through
an irrigator-designed program (Marston et al., 2022; Whittemore et al.,
2023). As such, it represents a logical testbed to explore PyCHAMP’s
ability to assess impacts of policy, regulations, or network topology on
farmer behavior and aquifer levels. We implemented a set of four ex-
periments to assess the potential impacts of different social and envi-
ronmental factors on groundwater conservation effectiveness and the
parameterization of agents in the SD-6 model. These are meant to both
demonstrate PyCHAMP’s capabilities, identify areas of needed future
model development, and highlight key factors that could be explored
through more detailed study in future work.

Experiment 1 emphasized the challenge of disentangling the impacts
of policy effects from external factors, as the model captured a decrease
in water withdrawal even without the LEMA policy, likely attributed to
model structure, weather, and/or economic changes. However, the
discrepancy from the annual withdrawal observation, particularly dur-
ing high precipitation years, underscores the necessity for more in-depth
analysis with more finely tuned sub-models.

Experiment 2 highlighted the notable effect of CONSUMAT threshold
parameters on the model’s outcomes, pointing to the importance of
grounding these parameters in empirical evidence through surveys and
behavioral experiments. This step is critical for enhancing the accuracy
of behavioral assumptions within the model, and suggests that future
modeling efforts would benefit from more closely coupled integration
between social and physical science research.

In Experiment 3, the exploration of fixed CONSUMAT states unveiled
complex behavioral dynamics among farmers, revealing varied decision-
making processes under different scenarios. This complexity suggests
that incorporating different social-behavioral theories could provide a

more nuanced understanding of human behavior in system models,
potentially addressing the concerns raised in Experiment 1 regarding the
true effectiveness of the LEMA policy by more accurately capturing
human behaviors.

Experiment 4 demonstrated PyCHAMP’s flexibility by simulating a
scenario in which farmers manage multiple fields. This led to the
adoption of mixed-cropping strategies, a change in withdrawals during
wet/dry years, and a reduction in profit disparities among farmers. Our
findings support empirical evidence that farm size and groundwater use
are causally linked (Ao et al., 2021). Pooling land and water among
three fields resulted in longer simulation times due to the complexity of
optimizing multiple fields—a factor that requires consideration in future
applications.

Collectively, these experiments highlight the ability of PyCHAMP to
evaluate a variety of different policies, management, and behavioral
scenarios. However, they also demonstrate a need for continued inte-
gration of detailed sub-models, systematic characterization of model
structural uncertainty, and refinement of behavioral parameters through
empirical research. Additionally, future explorations could investigate
optimal irrigation strategies under LEMA policies, account for crop in-
surance considerations, and address epistemic uncertainty in the
behavioral framework.

5.2. Strengths and capabilities of PyCHAMP

PyCHAMP is a versatile platform featuring predefined components
(modules) that reduce the technical skill requirements while retaining
flexibility for users to customize agent types (classes), in which models
different in simulation procedures or coupling structures can also be
built following Mesa’s guideline. We showcased PyCHAMP’s capabil-
ities and flexibility through the application of the SD-6 Model. This
model is particularly effective in evaluating the efficacy of water con-
servation policies, such as the SD-6 LEMA. Unlike other agent-based
agro-hydrological models (Castilla-Rho et al., 2015; Jaxa-Rozen et al.,
2019; Nozari et al., 2023; Rouhi Rad et al., 2020) with rigid structural
designs and limited sub-model options, PyCHAMP offers greater
adaptability and applicability that enables its broader use beyond a
limited geographical area or a single use case, while more constrained
than Pynsim (Knox et al., 2018) to reduce technical requirement. This
restricted generalizability provides several advantages over existing
tools.

First, PyCHAMP maintains the flexibility to tailor model complexity
to align with the user’s specific research needs, data availability, and
computational capabilities. This flexibility is exemplified by the possi-
bility of incorporating more detailed physically-based hydrological

Fig. 12. a) The ratio of farmers based on crop composition across three fields is analyzed. Less water-intensive options include sorghum, soybeans, wheat, and fallow.
Bar plots illustrate the values of three-field minus single-field scenarios in terms of their b) median and c) standard deviation of average profit per field during dry and
wet years.
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models (Aghaie et al., 2020a; Du et al., 2022; Khan and Brown, 2019;
Noël and Cai, 2017) or advanced crop models such as Aquacrop-OS
(Foster et al., 2017) with granular simulation timesteps through the
addition of custom classes. However, additional model complexity may
induce tradeoffs by creating increased model error due to propagation of
uncertain process representations through highly parameterized models
(Saltelli et al., 2019), so should be done with caution, only when
necessary for the question or region under investigation, and only where
sufficient data exist to accurately parameterize these complex models.
To integrate more detailed models, the Mesa scheduler may call each
agent annually (as defined in the model), but the sub-model can run in a
finer step (e.g., daily) upon an annual call, or it can skip a call by
customizing the associated class with an “if statement,” since the “cur-
rent timestep” is a global attribute available to all agents. This integra-
tion could facilitate nuanced analyses of well capacity’s effects on water
use (Hrozencik et al., 2017) and the evaluation of irrigation scheduling
on crop yields (Jimenez et al., 2020). Once new agent types are devel-
oped and added to their corresponding component in PyCHAMP, users
may then interchange agent types for a selected model (e.g., the SD-6
Model). This capability can enrich the research process by enabling an
exploration of the effects of model complexity on outcomes, a funda-
mental and important aspect of complex system modeling (Saltelli et al.,
2019).

Second, PyCHAMP supports the exploration of social-behavioral
theories and the quantification of structural uncertainty in human
model design. Our experiments demonstrated how the CONSUMAT
behavioral framework significantly influenced modeling outcomes and
the potential lock-in to a specific CONSUMAT state. Despite this, the
certainty of such assumptions in the decision-making process remains
low due to limited knowledge of human behaviors. PyCHAMP allows
users to create diverse behavioral agent types based on various heuris-
tics, observations, or theories like the Theory of Planned Behavior
(Ajzen, 1991), facilitating the investigation of different human behavior
on feedback and other complex dynamics of human-natural systems
(Ekblad and Herman, 2021; Lin and Yang, 2022; Yoon et al., 2023).

Third, PyCHAMP implicitly forms a network topology over agents
through user-defined inputs. Namely, this feature conceptually forms a
node-link model structure similar to Pynsim (Knox et al., 2018). As
opposed to grid-based models, node-link structures enable applying
multiple spatial resolutions to different agent types. This approach re-
duces unnecessary complexity and computational costs associated with
grid-based models, where the minimal spatial unit is uniformly applied
(de Bruijn et al., 2023). By allowing varied spatial units across agent
types, PyCHAMP enables effective information flow among components
at different scales, making it an excellent tool for assessing impacts on
environmental and socio-economic heterogeneity.

Lastly, leveraging the agent-based modeling framework from Mesa,
PyCHAMP can evaluate policies at both the system and individual levels.
This feature facilitates the exploration of equality issues (Koebele et al.,
2023) among heterogeneous farmer agents, in addition to achieving
systemic goals like mitigating groundwater depletion.

5.3. Limitations

While PyCHAMP offers a powerful platform for exploring human-
natural systems, several limitations should be addressed in future iter-
ations. Although PyCHAMP allows for complete flexibility in structuring
simulation models with customized classes (agent types) for each
component (module), it requires some programming expertise from
users. However, once new models and agent types are developed and
added into PyCHAMP, users can switch across them and modify the
network connectivity through inputs with further code modification. To
assist newcomers, we offer an online tutorial and examples at https://
dises-pychamp.readthedocs.io/. Additionally, the computational cost
of the optimization component can be significant, influenced by the
number of behavioral actors (e.g., farmers) and input dimensions, such

as the number of crop choices, technology options, fields, and wells. This
arises from formulating farmers’ decision-making processes as mixed-
integer nonlinear problems. Solutions might include simplifying or
linearizing the optimization problem, or running the model on a
computing cluster to enhance scalability. Complex system modeling
often requires extensive input data, and PyCHAMP may pose challenges
in settings where data availability is limited. However, its modular
structure is designed to maximize flexibility, allowing users to adapt the
model to available data, thereby mitigating potential limitations related
to data scarcity.

The SD-6 Model, which demonstrates PyCHAMP capabilities, cap-
tures dynamics related to saturated thickness, withdrawal, and crop
choice. This model also allows us to highlight some assumptions and
limitations that users may encounter when building models with
PyCHAMP. First, the SD-6 LEMA case study presumes static inflow into
the aquifer, employing constant coefficients aaq and baq for the Kansas
Geological Survey–Water Balance Method, which is consistent with
long-term field observations in the SD-6 LEMA (Whittemore et al.,
2023). However, this assumption may be problematic for simulations
projecting multiple decades into the future, as the aquifer water balance
could vary with increasing water use efficiency due to changes in
recharge or lateral flows (Butler et al., 2020). These potential future
changes to net inflow will be apparent through deviations in the Kansas
Geological Survey-Water Balance Method, and therefore can be
addressed by continuing to update these relationships through time. For
forecasting purposes, PyCHAMP could also be modified by using dy-
namic inflow in the default Aquifer class (similar to Butler et al., 2020)
or developing a new agent type to incorporate more complex physical
groundwater models. Secondly, the static water-yield production func-
tions used in the Field class do not consider the impacts of
over-irrigation, the results of optimization, or the inter-seasonal weather
variations, as evidenced by significant data uncertainty in function
fitting (Fig. S2). Future integration with a more detailed crop model,
such as AquaCrop-OS (Foster et al., 2017), may overcome these issues.
Third, we applied uniform pumping and well efficiencies across all wells
in the case study, along with consistent pumping durations. This
approach fails to fully capture the heterogeneity of wells and disregards
irrigation schedules. Addressing this requires simulations with finer
temporal resolution, particularly for identifying optimal sub-annual
irrigation strategies under LEMA policy. Fourth, the current Financial
class omits considerations of crop insurance, which could influence
farmers’ decisions (Ghosh et al., 2023; Yu and Sumner, 2018; Zipper
et al., 2024). Also, future work should further evaluate the epistemic
uncertainty and quantify the model structure uncertainty associated
with the ‘CONSUMAT’ approach adopted by the Behavior class. Finally,
the assumption of annual decision-making might overlook the impact of
seasonality, leading to an inaccurate representation. Future studies are
encouraged to explore a finer decision-making timescale, as multiple
decision points could exist, especially in cases of crop failures due to
extreme weather.

6. Conclusion

In this paper, we introduce the open-source Python-based Crop-
Hydrological-Agent Modeling Platform (PyCHAMP). PyCHAMP is
designed to represent the complexities of human-water systems and
support agricultural water management and policy modeling. The
modularized components of PyCHAMP offer great flexibility and
adaptability for custom applications. Specifically, PyCHAMP encom-
passes five main components: aquifer, field, well, finance, and behavior,
which enable users to construct an interconnected complex system to
explore the interplay between human and natural systems, considering
both environmental and socio-economic factors.

In the SD-6 LEMA case study, we use PyCHAMP to build the SD-6
Model, successfully capturing observed dynamics in saturated thick-
ness, groundwater withdrawal, and crop plantings. Our findings
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illustrate the pivotal role of endogenously simulated human decision-
making in evaluating the effectiveness of water conservation policies.
The local sensitivity analysis further illuminates the significant influence
of behavioral parameters on the modeling outcomes. Additionally, we
explore how each CONSUMAT state affects farmers’ decision-making
dynamics. Our analysis also demonstrates that, during dry periods,
farmers managing three fields achieve higher profits and more equitable
earnings compared to the scenario where farmers manage a single field.
These numerical experiments demonstrate how PyCHAMP can facilitate
scenario-based analysis.

In conclusion, PyCHAMP serves as a potentially valuable tool in
supporting the development and evaluation of sustainable groundwater
management efforts. Its structural design not only suits current appli-
cations but also paves the way for future integrations with more so-
phisticated sub-models as new agent types. This facilitates exploration of
coevolution theories in human-natural systems and a systematic
approach to quantify model structural uncertainty, providing a new
platform for future research and policymaking in agricultural ground-
water management.

Software and data availability

Name of software: PyCHAMP v1.0.0.
Developers: Chung-Yi Lin and Maria Elena Orduna Alegria.
Year first available: 2024.
Program language: Python.
Operating systems supported: Windows.
Hardware required: Basic computer with 4 GB RAM and dual-core

CPU.
Software or environment requirements: Python ≥ 3.11, Mesa =

2.1.1, and Gurobi ≥ 11.0.2
Program size: 3 MB.
Availability: PyCHAMP v1.0 can be freely accessed on GitHub (http

s://github.com/philip928lin/PyCHAMP), where the user manual and
data used in this manuscript are also included.
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