
1. Introduction
Cyber-physical systems (CPS) interconnect physical infrastructures with digital networks, often leveraging smart 
water technologies. These technologies enable automated monitoring and operation, facilitating remote real-
time control of CPS. However, they also present new cybersecurity challenges to contemporary water systems 
(Tuptuk et al., 2021). For example, in 2013, the Bowman Avenue Dam, located 30 miles north of Manhattan, 
was the target of a cyber-attack (Hassanzadeh et al., 2020). Similarly, in 2021, the control system of a water 
treatment plant in Oldsmar, Florida, was also hacked, enabling the attacker to remotely manipulate the levels of 
sodium hydroxide in the plant's water supply (Bergal, 2021). Recognizing these threats, the US Federal govern-
ment recently released a water sector action plan to expand public-private cybersecurity partnerships (The White 
House, 2022), underscoring the growing concerns over cybersecurity in the water industry.

In managing urban stormwater systems, effective strategies are essential to address issues like flooding, pollution, 
and erosion (Burian & Edwards, 2002; Fletcher et al., 2015; Jongman, 2018; Ministry of the Environment, 2003). 
Traditional methods often utilize nature-based solutions such as detention ponds with gravity-driven passive 
control to manage runoffs and diminish peak outflows (Huang et al., 2020; Van Meter et al., 2011). This involves 
optimizing properties such as pond capacities, conduit dimensions, and relative invert elevations of components 
(Froise & Burges,  1978; Yeh & Labadie,  1997). However, passive systems, where factors like outflow gate 
openings remain static, can be challenging and expensive to modify in response to changing weather patterns or 
land use once established (Shishegar et al., 2018). As a solution, smart water technologies, including sensors, 
actuators, and cloud storage, have been introduced to enhance flexibility and efficiency through real-time control 
(RTC) while being cost-effective (Gaborit et al., 2013; Mullapudi et al., 2017; Piro et al., 2019). For example, 
controlling upstream pond outflows proactively based on real-time water level data and weather forecasts can 
help regulate peak flow at a stormwater system’s outlet (Sadler et al., 2020; Shishegar et al., 2021; Wong & 
Kerkez, 2018). Such systems integrating smart water technologies are termed smart stormwater systems (Bartos 
et al., 2018).

Smart stormwater systems offer notable advantages for flood control, yet their inherent susceptibility to 
cyber-physical threats cannot be overlooked (Kriaa et al., 2015; Shin et al., 2020). The foundational technol-
ogy of these systems, termed Cyber Physical Systems (CPS), typically relies on Supervisory Control and Data 
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Acquisition (SCADA) systems that encompass both regulatory and supervisory layers (Amin et al., 2013). The 
supervisory layer gathers sensor data and estimates states, such as water levels, for fault detection. The processed 
data is then distributed to Programmable Logic Controllers (PLCs) via communication channels. Within the 
regulatory layer, these PLCs deduce control signals like ideal gate positions and convey them to, for instance, gate 
actuators, through localized networks. The entire communication process within these control systems is prone to 
cyber-physical attacks. Generally, these attacks fall under two categories: denial-of-service (DoS) attacks, which 
aim to disable the communication network by overwhelming the system with random data, and deception attacks, 
which misguide by modifying control objectives (i.e., setpoints) or feeding false sensor readings. Considering 
that the core design of most CPS involves a feedback control mechanism dependent on sensor data, even minor 
deceptive actions can have significant real-world consequences.

Elaborating further, the security dynamics in smart stormwater systems are distinctively different from those in 
traditional information technology (IT). In IT, the primary concern is often binary: whether an attack successfully 
breaches the SCADA system or not. However, in the context of smart stormwater systems, the emphasis shifts to 
the real-world implications of such intrusion, specifically, potential flood events. In particular, we focus on a type 
of deception attack known as “false data injection” (Mo & Sinopoli, 2010). This type of attack underscores  the 
intricate interplay between cyber intrusions and their tangible impacts within a smart stormwater framework. 
This study aims to bridge the understanding between cyber vulnerabilities and their direct physical outcomes, 
especially in the realm of smart stormwater management.

Stealthy false data injection (FDI) refers to the act of injecting false sensor measurements into the SCADA 
system without being detected, ultimately compromising the system's operations (Moazeni & Khazaei, 2021). 
The scope of FDI encompasses the corruption of data at the sensor level or during the transmission phase between 
sensors and the SCADA system (Taormina et al., 2018). Successful intrusions often manipulate the system’s 
inherent allowance for minor sensor discrepancies, known as sensor noises. Thus, the injected data essentially 
masquer ades as altered sensor noises. Such contaminated measurements can bias control decisions, such as regu-
lating pond outflows. The ramifications of these biased decisions can extend to tangible system damages like 
flooding, leading to the term “cyber-physical attacks.”

The phenomenon of FDI has been previously analyzed in contexts like water distribution systems (Ahmed 
et al., 2017; Moazeni & Khazaei, 2021), irrigation canals (Amin et al., 2012, 2013), and water treatment plants 
(Kumar et al., 2021). However, its impacts have not yet been explored in a smart stormwater system. The flooding 
impacts of FDI are intricately linked not just to the system’s vulnerabilities, but also to the intensity and patterns 
of prevailing natural storm events.

Additionally, while there’s a growing body of research addressing the implications of false data injection (FDI) 
attacks in CPS, the domain of risk assessment for these attacks remains under-explored. One notable exception is 
the work of Depoy et al. (2005), who proposed a high-level risk assessment framework for CPS in large-scale crit-
ical infrastructures such as water distribution systems. This framework considers both physical and cyber secu-
rity threats and allows decision-makers to label each threat component as high, medium, or low based on their 
expertise. Later, the framework was developed into a computer program to assist with cyber-physical systems risk 
assessment (DePoy et al., 2006). However, a specific mathematical framework for quantifying flood risks under 
the cyber-physical attack of FDI is still lacking.

Therefore, this study aims to analyze FDI impacts and develop a flood risks quantification method for FDI in a 
smart stormwater system. We operate under the assumption that FDI attacks are carried out by stealthy attackers 
who target a specific objective (i.e., to flood a pond) and possess complete knowledge of the CPS (i.e., know 
how to attack). Namely, this approach represents a worst-case scenario evaluation since we also assume that 
FDI attacks 100% occur. The study is divided into three tasks: (a) developing a mathematical framework to 
link FDI and physical responses, (b) examining the FDI impacts in a smart stormwater system, and (c) quanti-
fying the  additional flood risks caused by FDI and associated sensor noises and weather forecast uncertainties. 
As smart stormwater systems are not widely used in practice, this study uses a hypothetical case based on the 
real-world pond network layout to initiate the discussion of flood risks under FDI and to aid future system devel-
opment, including the development of defense strategies.

The article is structured as follows. In Section 2, the methods used to accomplish the three aforementioned tasks 
are presented. Section 3 introduces the study area and the experiment setup. Results are shown in Section 4. 
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Discussion of defending strategies and model limitations is shown in Section 5, followed by the Conclusions in 
Section 6.

2. Methods
2.1. Mathematical Framework for Smart Stormwater Systems

This study presents a mathematical framework (Figure 1) that abstracts a smart stormwater system into three main 
components: (a) a stormwater system representative, (b) an outflow control system, and (c) a bad data detector. The 
stormwater system is modeled using a linear state-space model that simulates the water balance and water level 
dynamics in a pond-conduit network. A time-invariant linear quadratic gaussian (LQG) controller is employed 
to control the system and assimilate water level measurements into model estimates using the Kalman filter to 
regulate outflow controls. A χ 2 detector (Mo & Sinopoli, 2010) is adopted to be a bad data detector. The detector 
will ensure the eligibility of the sensor measurements before passing them to the LQG controller. These three 
components comprise a feedback control loop. The study elaborates on these components in the following sections.

2.1.1. State-Space Representation for the Pond-Conduit Network

In our study, we considered a stormwater system consisting of a network of ponds and conduits (Figure 1). This 
system can be further simplified into a node-link structure, where the nodes represent storages (i.e., ponds) and 
the links represent the network topology (i.e., conduits). The state-space model (Equation 1) has been success-
fully adopted to simulate the water balance dynamics in such network-based systems (Ahmed et  al.,  2017; 
Schuurmans, 1997; Wong & Kerkez, 2018).

𝒙𝒙𝒕𝒕 = 𝐴𝐴 ⋅ 𝒙𝒙𝒕𝒕−𝟏𝟏 + 𝐵𝐵𝑢𝑢 ⋅ 𝒖𝒖𝒕𝒕−𝟏𝟏 + 𝐵𝐵𝑤𝑤 ⋅𝒘𝒘𝒕𝒕−𝟏𝟏 (1)

𝒚𝒚
𝒔𝒔𝒔𝒔𝒔𝒔

𝒕𝒕
= 𝐶𝐶 ⋅ 𝒙𝒙𝒕𝒕 (2)

where xt [cm] is a vector of states, including the water level of ponds and the flow quantities associated with 
each conduit segment. The flow quantities are represented by the water level change of the source pond. The 
inputs term ut−1 [cm] is a vector of pond outflows represented by the water level change of the source pond, 
and wt−1 [cm] is a vector of runoffs represented by the water level change of the destination pond. The subscript 

𝐴𝐴 𝐴𝐴 ∈  = {1, 2, . . . , 𝑇𝑇 } denote the time step in a discrete simulation system, where 𝐴𝐴   is a set of simulation time 
steps, and T is the number of time steps in a simulation. The coefficients A, Bu, and Bw are state, control, and distur-
bance matrixes, respectively. These matrices represent the dynamic behavior of states, control, and disturbances 
as time approaches infinity. Matrix A is a square matrix with a dimension equal to the number of states in xt. 
The diagonal elements corresponding to water level states have the value one; otherwise, zero. The off-diagonal 

Figure 1. A mathematical framework for smart stormwater systems consists of a stormwater (drainage) system 
representative, a LQG control system (the operator of the system), and a bad data detector. The red-colored variables indicate 
the polluted path to the outflow control (𝐴𝐴 �̂�𝒖 ), where y′ is the contaminated measurements from FDI.
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non-zero elements represent the routing process in conduits. Those non-zero elements have the value 𝐴𝐴
𝑎𝑎𝑠𝑠𝑠source

𝑛𝑛𝑐𝑐 ⋅𝑎𝑎𝑠𝑠𝑠destination

 , 

where nc is the number of segments in a conduct c and 𝐴𝐴
𝑎𝑎𝑠𝑠𝑠source

𝑎𝑎𝑠𝑠𝑠destination

 is the ratio of the source pond area and the destina-

tion pond area. Matrix Bu has the dimension of the number of states in xt times the number of ponds. In the matrix 
Bu, pond-to-conduit-inlet elements have the value of one, and conduit-outlet-to-pond elements have the value of 
negative one; otherwise, zero. Matrix Bw has the same dimension as Bu. The only non-zero elements are those 
linking sub-catchment runoff to a pond, which have the value of one. We expand Equation 1 and illustrate  the 
water level dynamics of Pond 1 in a two-pond system (Figure 1) in Equation 3.

𝑥𝑥
wl
1,𝑡𝑡

= 𝑥𝑥
wl
1,𝑡𝑡−1

+

Conduit inflow from Pond 2

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑎𝑎𝑠𝑠,2

𝑛𝑛𝑐𝑐2𝑎𝑎𝑠𝑠,1

(

𝑥𝑥
nc
𝑐𝑐2,1,𝑡𝑡−1

+ 𝑥𝑥
nc
𝑐𝑐2,2,𝑡𝑡−1

)

+

Outflow

⏞⏞⏞

𝑢𝑢1,𝑡𝑡−1 +

Runoff

⏞⏞⏞

𝑤𝑤1,𝑡𝑡−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Water level change of Pond 1 from different sources

 (3)

where x wl is pond water level states, and 𝐴𝐴 𝐴𝐴
nc
𝑐𝑐𝑐𝑐𝑐 is the water quantity state of segment s in a conduct c. The dynamic 

of the water level in a pond is equal to the water level at the previous time step (the first term) plus the water level 
changes resulting from the conduit inflows of the upstream ponds (the second term), the pond's outflow (the third 
term), and the runoffs (the fourth term) from its sub-catchments. The output matrix (C) in Equation 2 collects the 
simulated water level (𝐴𝐴 𝒚𝒚

𝒔𝒔𝒔𝒔𝒔𝒔

𝒕𝒕
 [cm]) information from xt. Matrix C has the dimension of the number of ponds times 

the number of states in xt. We provide a more thorough example with a three-pond system in Supporting Infor-
mation S1 (Text S1) to demonstrate the construction of a state-space model from a given pond-conduit network.

The sensor measurements of water levels (yt [cm]) are expressed in Equation 4.

𝒚𝒚
𝒕𝒕
= Γ

h

𝑡𝑡
⋅

(

𝒚𝒚
𝒔𝒔𝒔𝒔𝒔𝒔

𝒕𝒕
+ 𝒗𝒗𝒕𝒕

)

+ Γ
𝑎𝑎

𝑡𝑡
⋅ 𝒚𝒚

𝒂𝒂

𝒕𝒕 (4)

where Γ h and Γ a are indicator matrixes (i.e., 0 or 1) showing the time steps and sensors that are healthy or being 
attacked (i.e., FDI), respectively. The term vt [cm] is a vector of the sensor noises, which are assumed to be Gauss-
ian white noises. The term 𝐴𝐴 𝒚𝒚

𝒂𝒂

𝒕𝒕
 [cm] is a vector of the injected false data time step t.

2.1.2. LQG Controller for System Operation

The second component of the proposed framework is the LQG controller, which is composed of two main parts: 
the linear quadratic estimator (LQE) and the linear quadratic regulator (LQR). The LQE is the state observer that 
estimates future states (𝐴𝐴 �̂�𝒙𝒕𝒕 [cm]) by assimilating model predictions (𝐴𝐴 �̂�𝒚 [cm]) and water level measurements  through 
a Kalman filter as shown below:

�̂�𝒙𝒕𝒕 = 𝐴𝐴 ⋅ �̂�𝒙𝒕𝒕−𝟏𝟏 + 𝐵𝐵𝑢𝑢 ⋅ 𝒖𝒖𝒕𝒕−𝟏𝟏 + 𝐵𝐵𝑤𝑤 ⋅𝒘𝒘𝒕𝒕−𝟏𝟏 + 𝐿𝐿 ⋅ 𝒛𝒛𝒕𝒕−𝟏𝟏 (5)

𝒛𝒛𝒕𝒕 = 𝒚𝒚
𝒕𝒕
− �̂�𝒚

𝒕𝒕 (6)

�̂�𝒚
𝒕𝒕
= 𝐶𝐶 ⋅ �̂�𝒙𝒕𝒕 (7)

In LQE (Equations 5–7), we adopt the same state-space model (Equations 1 and 2) as the prediction model. The 
Kalman gain matrix, denoted by L, is used to adjust the current prediction using the differences between predic-
tions and measurements at the previous time step (zt−1 [cm]; Equation 6). The value of L is determined based on the 
level of sensor noises and the uncertainty in weather forecast. When the sensor noises are smaller than the forecast 
uncertainty, the value of L is closer to 1, indicating that the estimated state (𝐴𝐴 �̂�𝒙𝒕𝒕 ) relies more on the measurements. 
Conversely, when the forecast uncertainty is larger than the sensor noises, L is closer to 0, indicating that 𝐴𝐴 �̂�𝒙𝒕𝒕 depends 
more on the model prediction. The calculation for L is presented in (Text S2 of the Supporting Information S1).

LQR is a closed-loop feedback control method (Mo et al., 2010) that will use 𝐴𝐴 �̂�𝒙𝒕𝒕 from LQE to determine the opti-
mal control based on an overall objective function (Equation 8; J [cm 2]):

𝐽𝐽 = �̂�𝒙
T

𝑻𝑻
𝑄𝑄�̂�𝒙𝑻𝑻 +

∑𝑇𝑇−1

𝑡𝑡=1

(

�̂�𝒙
T

𝒕𝒕
𝑄𝑄�̂�𝒙𝒕𝒕 + �̂�𝒖

T

𝒕𝒕
𝑅𝑅�̂�𝒖𝒕𝒕

)

 (8)

where T is the total time step, Q is a weight matrix for the control error (e.g., deviation of desired water level), and R 
is a weight matrix for the control cost (e.g., power consumption of gate controllers). The term 𝐴𝐴 �̂�𝒙

T

𝑻𝑻
𝑄𝑄�̂�𝒙𝑻𝑻 is the control 

error at the terminal step. The analytical solution of this linear optimization problem to minimize J is 𝐴𝐴 �̂�𝒖𝒕𝒕 = −𝐾𝐾�̂�𝒙𝒕𝒕 , 
where 𝐴𝐴 �̂�𝒖𝒕𝒕 is the optimal control at the time step t, and K is the feedback gain matrix solved by the Riccati equation 
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(Kučera, 1973). In addition to the information derived from the measurements (i.e., 𝐴𝐴 �̂�𝒙𝒕𝒕 ), we adopt future information, 
such as future desired water levels (𝐴𝐴 𝓻𝓻𝒕𝒕 [cm]) and forecasted runoffs (𝐴𝐴 �̃�𝒘𝒕𝒕 [cm]), to adjust the outflow control (𝐴𝐴 �̂�𝒖𝑡𝑡 [cm]):

�̂�𝒖𝒕𝒕 = −𝐾𝐾 ⋅ �̂�𝒙𝒕𝒕 +𝐾𝐾𝑟𝑟 ⋅ 𝓻𝓻𝒕𝒕 +𝐾𝐾𝑤𝑤 ⋅ �̃�𝒘𝒕𝒕 (9)

where Kr and Kw are two corresponding feedforward gain matrixes for 𝐴𝐴 𝓻𝓻𝒕𝒕 and 𝐴𝐴 �̃�𝒘𝒕𝒕 , respectively. For example, if the 
system foresees a large incoming runoff or a decrease in desired water levels (i.e., control target), outflow control (

𝐴𝐴 �̂�𝒖𝒕𝒕 ) will be enlarged. We provide the detailed derivation of K, Kr, and Kw in Text S2 of the Supporting Information S1.

The actual controllable outflows (defined as a negative value), however, are limited to the available water in 
ponds (𝐴𝐴 𝒖𝒖

𝒂𝒂𝒂𝒂

𝒕𝒕
 [cm]) and the physical properties of gravity-driven outflows (𝐴𝐴 𝒖𝒖

𝒖𝒖𝒖𝒖

𝒕𝒕
 [cm]; assuming no pumps were 

installed) as shown in Equation 10.

𝒖𝒖𝒕𝒕 = max

(

min(0, �̂�𝒖𝒕𝒕),−𝒖𝒖
𝒂𝒂𝒂𝒂

𝒕𝒕
,−𝒖𝒖

𝒖𝒖𝒖𝒖

𝒕𝒕

)

 (10)

𝒖𝒖
𝒂𝒂𝒂𝒂

𝒕𝒕
= 𝒚𝒚

𝒔𝒔𝒔𝒔𝒔𝒔

𝒕𝒕
 (11)

𝒖𝒖
𝒖𝒖𝒖𝒖

𝒕𝒕
= 𝒖𝒖𝒈𝒈 × 𝝁𝝁 × 𝒂𝒂𝒈𝒈 ×

√

2𝑔𝑔𝒚𝒚
𝒂𝒂𝒖𝒖𝒕𝒕

𝒕𝒕
×

(

𝑑𝑑𝑑𝑑

𝒂𝒂𝒔𝒔

)

 (12)

𝒚𝒚
𝒂𝒂𝒂𝒂𝒂𝒂

𝒂𝒂
= min

(

𝒚𝒚
𝒎𝒎𝒂𝒂𝒎𝒎

, 𝑚𝑚𝑚𝑚𝑚𝑚
(

0, 𝒚𝒚
𝒔𝒔𝒔𝒔𝒎𝒎

𝒂𝒂

))

 (13)

The available water in ponds (𝐴𝐴 𝒖𝒖
𝒂𝒂𝒂𝒂

𝒕𝒕
 ) is equal to 𝐴𝐴 𝒚𝒚

𝒔𝒔𝒔𝒔𝒔𝒔

𝒕𝒕
 (Equation 11). The maximum gravity-driven outflows (𝐴𝐴 𝒖𝒖

𝒖𝒖𝒖𝒖

𝒕𝒕
 ) is 

computed under the assumption of full pipe flow (Equation 12), where cg is a calibrated gate coefficient, μ is the 
coefficient of contraction (often set to 0.65; Rossman, 2010), ag is the cross-section area of the maximum gate 
opening (e.g., orifice), g is gravitational acceleration, and the actual water level in a pond (𝐴𝐴 𝒚𝒚

𝒂𝒂𝒂𝒂𝒂𝒂

𝒂𝒂
 [cm]; Equation 13) 

is bounded between 0 (i.e., no negative water level) and the maximum depth of ponds (𝐴𝐴 𝒚𝒚
𝒎𝒎𝒎𝒎𝒎𝒎

𝒕𝒕
 [cm]). The term 𝐴𝐴

𝑑𝑑𝑑𝑑

𝒂𝒂𝒔𝒔

 
converts the unit from flow rate to the ponds' water level change, where dt is the simulation time interval and as 
is a vector of the surface area of ponds, a function of 𝐴𝐴 𝒚𝒚

𝒂𝒂𝒂𝒂𝒂𝒂

𝒂𝒂
 .

2.1.3. Bad Data Detector

Bad data is defined as any measurements that deviate from the estimated values' tolerance range. This study 
adopted a χ 2 detector (Mo et al., 2010) as a bad data detector in Equation 14.

Err𝑡𝑡 = 𝒛𝒛
T

𝒕𝒕
⋅ 

−1
⋅ 𝒛𝒛𝒕𝒕 ≤ 𝜀𝜀 (14)

where zt is a vector of the water level differences between LQE estimated values and measurements at the time 
step t as shown in Equation 6, 𝐴𝐴  is a sensor weight matrix, and ε is an operator-selected threshold for measured 
errors tolerance (see the next section). We further denote 𝐴𝐴 𝒛𝒛

𝑇𝑇

𝒕𝒕
⋅ −1

⋅ 𝒛𝒛𝒕𝒕 as Errt [cm 2]. The assumption of white noise 
allows us to consider the error term Errt as the sum of the weighted squares of independent and identically distrib-
uted Gaussian sensor noises (i.e., inter-product of zt). Such that Errt follows a χ 2 distribution with a degree of 
freedom equivalent to the number of water level sensors. As sensor noise is a stochastic component of the system, 
we must design operational rules and attacking strategies from a probabilistic perspective. It is worth noting that 
ut−1, wt−1, and zt−1 in Equation 5 become known values for the next time step t. The statistic Errt is independent to 
forecasted runoffs (𝐴𝐴 �̃�𝒘𝒕𝒕 ). Hence, it is not affected by the forecast uncertainty in identifying bad data.

2.2. FDI Impact Evaluation

2.2.1. Operation and FDI Strategies

This study evaluates FDI impact and quantifies the risk associated to FDI cyber-attacks given a set of operation 
(the operator's perspective) and FDI (the attacker's perspective) strategies. The operation strategy (𝐴𝐴 ) and FDI 
strategy (𝐴𝐴  ) in a smart stormwater system (𝐴𝐴   ) are defined as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

 = {𝐴𝐴𝐴𝐴𝐴𝑢𝑢𝐴 𝐴𝐴𝑤𝑤𝐴 𝐶𝐶𝐴ℊ𝐴 𝐿𝐿𝐴𝐿𝐿𝐴𝐿𝐿𝑟𝑟𝐴 𝐿𝐿𝑤𝑤}

 = {𝐴 𝑝𝑝}𝐴

 = {Γ
𝑎𝑎
𝐴 𝑝𝑝

𝑎𝑎
}

 (15)
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where p is the designed probability that the detector alarm will not be triggered in a healthy system during a storm 
event. Namely, 1 − p is the probability of a false alarm.

The designed probability of a successful FDI given attacking sensors and time steps (Γ a) in a storm event is 
denoted as p a. Next, we convert p and p a into the corresponding single-time step thresholds for an operator thresh-
old (ε) and an attacker threshold (ε a) in Equation 16.

⎧

⎪

⎨

⎪

⎩

𝜀𝜀 = 𝜒𝜒
2

dof=𝑛𝑛

−1
(

𝑝𝑝
1∕𝑇𝑇

)

,

𝜀𝜀
𝑎𝑎
= 𝜒𝜒

2

dof=𝑛𝑛−𝑛𝑛𝑎𝑎

−1
(

(𝑝𝑝
𝑎𝑎
)
1∕𝑇𝑇

𝑎𝑎)
 (16)

where T is the total control time steps, n is the number of sensors, T a is the total attacking time steps, and n a is the 
number of attacking sensors. Degree of freedom of a χ 2 distribution is denoted as dof. The decrease in ε a's dof is 
because we replace some random sensor noises with a known deterministic false data. The difference between ε 
and ε a is defined as an attackable range (Err a [cm 2]). It represents the maximum magnitude of total injected false 
data at a single control time step that satisfies the designed attacking strategy. Figure 2 visualizes the concept of ε 
(yellow lines) and ε a (blue lines) and indicates Err a with different T a (solid lines; dt is equal to 1 min in Figure 2) 
and different p a (dashed lines). From the operator's viewpoint, if p is set to a very large value, it increases the 
targeted space for the attacker (i.e., wider Err a); however, if p is set to a very low level, then false alarms may lose 
their significance and get overlooked by operators. From the attacker's viewpoint, if p a is set too large, decreased 
Err a might limit the goal to flood a pond; however, if p a is set too low, there is a higher chance the attack will be 
detected and blocked. Being detected might trigger the system upgrade against future attacks, which an attacker 
will want to avoid.

2.2.2. Solving FDI With Optimization

The proposed mathematical framework can be framed into an optimization model from an attacker viewpoint, 
which allows us to analyze the maximum FDI impacts that could bring to the system given the operation and 
attacking strategies (i.e., 𝐴𝐴  and 𝐴𝐴  , respectively). Specifically, we solve the injected false data (𝐴𝐴 𝒚𝒚

𝒂𝒂

𝒕𝒕
 [cm]) by 

formulating the proposed mathematical framework into a deterministic mixed-integer quadratically constrained 
programming (MIQCP) problem. The stealthy attacker is well-knowledge about the stormwater system (𝐴𝐴   ) and 

Figure 2. χ 2 distributions for an operator (yellow lines) and attacker (blue lines) to determine corresponding thresholds, ε and 
ε a, based on their operation and attack strategy. The attackable range (Err a) decreases as the number of attacking time steps 
(T a) increases and increases as the designed probability of a successful FDI (p a) decreases (dashed lines).
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the operation strategy (𝐴𝐴  ) and know how to solve the optimization problem. 
In addition, we also assume they have a target pond (starget) to flood. Hence, 
the attacker's objective function in this MIQCP problem is:

Obj = Max

{

∑

𝑦𝑦
sim
𝑠𝑠target ,𝑡𝑡

}

 (17)

which is subjected to Equations  1–13 (except Equations  3 and  8), Equa-
tions 18 and 19 with no sensor noises (vt = 0) as E[vt] = 0 and a perfect 
weather forecast (𝐴𝐴 �̃�𝒘𝒕𝒕 = 𝒘𝒘𝒕𝒕 ).

𝒛𝒛
T

𝒕𝒕
⋅ 

−1
⋅ 𝒛𝒛𝒕𝒕 ≤ Err

𝑎𝑎 (18)

𝒙𝒙𝐭𝐭𝐬𝐬
= �̂�𝒙𝐭𝐭𝐬𝐬

= 𝒙𝒙
𝒉𝒉

𝐭𝐭𝐬𝐬
, 𝒖𝒖𝐭𝐭𝐬𝐬

= 𝒖𝒖
𝒉𝒉

𝐭𝐭𝐬𝐬
, 𝑡𝑡 ∈ 

a
= {𝑡𝑡𝑠𝑠 + 1, 𝑡𝑡𝑠𝑠 + 2, . . . , 𝑡𝑡𝑠𝑠 + 𝑇𝑇

𝑎𝑎
} (19)

We substitute the bad data detector (Equation  14) with Equation  18 since 
the only source of zt is 𝐴𝐴 𝒚𝒚

𝒂𝒂

𝒕𝒕
 in a deterministic setup. The adoption of Err a is to 

ensure the successful FDI rate is at least p a (i.e., rate of not being detected). 
Since we only need to solve 𝐴𝐴 𝒚𝒚

𝒂𝒂

𝒕𝒕
 for the time steps having FDI, the initial 

values of this MIQCP problem (i.e., 𝐴𝐴 𝒙𝒙𝐭𝐭𝐬𝐬
 , 𝐴𝐴 �̂�𝒙𝐭𝐭𝐬𝐬

 , and 𝐴𝐴 𝒖𝒖𝐭𝐭𝐬𝐬
 ) are equal to the values 

in a healthy system at the time ts (i.e., 𝐴𝐴 𝒙𝒙
𝒉𝒉

𝐭𝐭𝐬𝐬
 and 𝐴𝐴 𝒖𝒖

𝒉𝒉

𝐭𝐭𝐬𝐬
 ; Equation 19). We show a 

complete MIQCP problem in Text S3 of the Supporting Information S1.

2.2.3. Consequences of FDI

To clarify the concept for our audience, we have included an example of a 
simple three-pond system to demonstrate two potential FDI consequences in 
Figure 3 before diving into risk quantification.

In this example, Pond 1 is the target of the attack. The first type of FDI impact 
is when the attacker can manipulate peak inflows to Pond 1 by injecting 
false data to aggregate the peak outflows of the upstream ponds (Figure 3b). 
However, this strategy requires the attacker to falsify multiple pond measure-

ments, which reduces the magnitude of the false data that can be used per pond. Additionally, physical constraints 
and the conduit capacity limit the maximum peak flow that the FDI can create. The second type of FDI impact is 
to attack the sensor related to Pond 1 to maliciously reduce its outflow, as shown in Figure 3c. Considering that 
all Err a would now contribute to a single sensor, the impact tends to be larger.

Both types of FDIs aim to increase the water level in Pond 1, which can lead to a higher flood risk due to reduced 
tolerance toward control errors from weather forecast uncertainties. An attacker can also combine those two 
attacking strategies to maximize the impact as shown in Figure 3d. Figure 3d indicates a higher water level peak 
with the FDI-to-all-sensors scenario than uncontrolled and controlled scenarios. Under the FDI scenario, the 
water level in Pond 1 exceeds its capacity, resulting in flooding.

2.3. Flood Risks Under Cyber-Physical Attacks Quantification

Knowing the potential FDI impact on the CPS of a smart stormwater system (Section 2.2), we further propose 
a method to quantify flood risks under FDI to address the stochastic nature rooted in sensor noises and weather 
forecast uncertainties in this section. Given a smart stormwater system (𝐴𝐴   ), the level of sensor noises (σs), 
weather forecast uncertainty (σw), an attacking strategy (𝐴𝐴  ), an operation strategy (𝐴𝐴  ) and 𝐴𝐴 𝐴𝐴 ∈  𝑎𝑎 , flood risks 
under FDI can be decomposed into three terms and quantified by Equation 20.

𝑃𝑃𝑐𝑐(𝐹𝐹𝑠𝑠)

⏟⏟⏟

𝑃𝑃
𝑠𝑠
𝑐𝑐

= 𝑃𝑃 (𝐸𝐸)

⏟⏟⏟

𝑃𝑃𝐸𝐸

× 𝑃𝑃
(

𝒛𝒛
T

𝒕𝒕
⋅ 

−1
⋅ 𝒛𝒛𝒕𝒕 ≤ 𝜀𝜀|𝒚𝒚

𝒂𝒂
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹

×

[

1 − 𝑃𝑃
(

𝑑𝑑𝑑𝑑
𝑓𝑓

𝑠𝑠𝑠𝑠𝑠
≤
(

𝑑𝑑
max

𝑠𝑠 − 𝑑𝑑
sim𝑠𝑎𝑎

𝑠𝑠𝑠𝑠𝑠

)

|𝒚𝒚
𝒂𝒂
)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑃𝑃
𝑠𝑠

𝑊𝑊

 (20)

where 𝐴𝐴 𝐴𝐴
𝑠𝑠

𝑐𝑐 = 𝐴𝐴𝑐𝑐(𝐹𝐹𝑠𝑠) is the risk of pond s getting flooded within 𝐴𝐴  𝑎𝑎 given the occurrence of FDI. The term Fs is an 
indicator variable (value “1” if pond s is flooded). Flood risks under FDI are decomposed into three terms. The 
first term PE = P(E) is the occurrence probability of a storm E that can be calculated from the return period of 

Figure 3. Disclosure of potential FDI consequences with Pond 1 as the 
flooding target. (a) A smart stormwater system with three ponds. (b) Water 
level impact of Pond 1 from enlarging inflow caused by FDI. (c) Water level 
impact of Pond 1 from reducing outflow caused by FDI. (d) The water level 
time series of Pond 1 under uncontrolled, controlled, and FDI scenarios.
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a storm. The second term, 𝐴𝐴 𝐴𝐴
FDI

= 𝐴𝐴
(

𝒛𝒛
T

𝒕𝒕
⋅ −1

⋅ 𝒛𝒛𝒕𝒕 ≤ 𝜀𝜀|𝒚𝒚
𝒂𝒂
)

 , is the successful FDI rate (i.e., FDI occurred but not 
being detected) given y a. The injected false data (y a) is solved by optimization introduced in Section 2.2. The 
third term, 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝑊𝑊
=

[

1 − 𝐴𝐴
(

𝑑𝑑𝑑𝑑
𝑓𝑓

𝑠𝑠𝑠𝑠𝑠
≤
(

𝑑𝑑
max

𝑠𝑠 − 𝑑𝑑
sim𝑠𝑎𝑎

𝑠𝑠𝑠𝑠𝑠

)

|𝒚𝒚
𝒂𝒂
)]

 , is the flooding probability of pond s under the water level 
control errors (𝐴𝐴 𝐴𝐴𝐴𝐴

𝑓𝑓

𝑠𝑠𝑠𝑠𝑠
 [cm]) caused by forecast uncertainties given y a. The simulated water levels given y a is denoted 

as 𝐴𝐴 𝐴𝐴
sim,𝑎𝑎

𝑠𝑠,𝑠𝑠
 , and 𝐴𝐴 𝐴𝐴

max
𝑠𝑠  is the maximum depth of pond s.

To evaluate these three terms, we estimate PE from frequency analysis using depth-duration-frequency (DDF) 
curve (Figure 4a). PFDI is calculated by multiplying the blue area under the shifted 𝐴𝐴 𝐴𝐴

2

dof=𝑛𝑛−𝑛𝑛𝑎𝑎
 distribution over 

every time step in 𝐴𝐴  𝑎𝑎 (Figure 4b). The shift is equal to 𝐴𝐴 Err𝑡𝑡 = 𝒛𝒛
T

𝒕𝒕
⋅ −1

⋅ 𝒛𝒛𝒕𝒕 as shown in Equation 14. The flooding 
probability under control errors (𝐴𝐴 𝐴𝐴

𝑠𝑠

𝑊𝑊
 ) is estimated by Monte Carlo simulations, where 1,000 realization sets of 

sensor noises and forecasted runoffs were generated to evaluate the water level variations given y a. For example, 
even the water level under one single FDI experiment in a deterministic system (orange line in Figure 4c) does 
not overflow the pond, some realizations of sensor noises and forecast uncertainties might result in floods (some 
gray lines are over 100% pond's capacity in Figure 4c), where the brown dashed line references the water level 
in the controlled scenario. Then, 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝑊𝑊
 is computed by the number of flooded realizations to the total number of 

realizations.

Risks of pond s (𝐴𝐴 𝐴𝐴
𝑠𝑠

𝑐𝑐  ) getting flooded within T a, given the occurrence of FDI, is then quantified by multiplying PE, 
PFDI, and 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝑊𝑊
 together. Note that the decomposition of PFDI and 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝑊𝑊
 assumes that the runoffs at the previous time 

step (wt−1) is a known value in Equation 5.

3. Materials
3.1. Study Area

This study adopts a stormwater system design (Figure 5) with a network layout of nine ponds, based on a resi-
dential area in Bethlehem Township, PA, US. The total basin area is 0.81 km 2. The ponds are radically connected 
to Pond 1 through circular conduits, with Pond 1 serving as the system outlet that flows into the Nancy Run 
Creek. The design of the stormwater system was carried out using the US EPA’s Storm Water Management 
Model (SWMM; Rossman, 2010). The goal was to ensure that all pond outflows remained below 1.4 m 3/s during 

Figure 4. Probability estimation concepts for (a) PE, (b) PFDI, and (c) 𝐴𝐴 𝐴𝐴
𝑠𝑠

𝑊𝑊
 , where PE is estimated by DDF curve, PFDI (blue 

area) is calculated from 𝐴𝐴 𝐴𝐴
2

dof=𝑛𝑛−𝑛𝑛𝑎𝑎
 distribution, and 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝑊𝑊
 is computed by Monte Carlo simulations over realizations of sensor 

noises and forecasted runoffs (gray lines).
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a 2-year-24-hr design storm (Figure S2 in Supporting Information S1) and that all pond water levels remained 
below 85% of their storage capacities during a 25-year-24-hr design storm (Figure S3 in Supporting Informa-
tion S1) in a passive control scenario (i.e., uncontrolled). This was achieved because the designed system was 
intended to reduce outflow peaks while also ensuring that it could withstand a 25-year-24-hr design storm with-
out causing flooding. The synthetic design storms are based on the standard 24-hr NRCS type II rainfall distri-
bution (NRCS, 2004) with a DDF curve from NOAA Atlas 14 Volume 2 Version 3 (Bonnin et al., 2004). This 
study only considers 24-hr storms, and all storms mentioned in the content below are 24-hr designed storms. The 
ponds are assumed to be rectangular for simplicity, with a fixed value for the pond surface area (as) over depth.

Without losing the generality, the ponds are set to be rectangular, in which the pond's surface area (as) is a fixed 
value over depth. A square orifice is located at the bottom of each pond, with the invert elevation of each pond 
higher than the overflow heights of all downstream ponds to satisfy the gravity-driven outflow assumption (Equa-
tion 12). Table S1 in Supporting Information S1 provides detailed information on the configuration of this design 
stormwater system, including pond capacities, conduit lengths, orifice sizes, and invert elevations. For a “smart” 
stormwater system, a water level sensor and an outflow gate actuator are installed at each pond, communicating 
with a SCADA center.

3.2. Numerical Experiment Setup

Our numerical experiment involves three scenarios: (a) uncontrolled, (b) controlled, and (c) FDI associated with 
the controlled system. We translate the pond-conduit network (Figure 5) into A, Bu, Bw, and C matrixes to estab-
lish a state-space model with discretized time step equal to 1 min. First, we calibrate the number of segments (nc) 
and gate coefficient (cg) with the SWMM-simulated data in the uncontrolled scenario, where pond outflows are 
governed by:

𝒖𝒖𝒕𝒕 = max

(

−𝒖𝒖
𝒂𝒂𝒂𝒂

𝒕𝒕
,−𝒖𝒖

𝒖𝒖𝒖𝒖

𝒕𝒕

)

 (21)

Figure 5. A designed stormwater system with the network layout referenced from a residential area in Bethlehem township, 
PA, US. Ponds' capacities are indicated by circle size in a log scale.
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For nc, we search in [1, 4] from upstream to downstream to minimize the 
averaged Root Mean Square Error (RMSE) of SWMM-simulated water 
levels under 2-year and 25-year storms (𝐴𝐴 RMSE𝑛𝑛𝑐𝑐

 ). Then, we manually tune cg 
to minimize the averaged RMSE of SWMM-simulated water levels and pond 
outflows under 2-year and 25-year storms (𝐴𝐴 RMSE𝐶𝐶𝑔𝑔

 ).

Next, we developed a simple control rule for maintaining the desired water 
level (𝐴𝐴 𝓻𝓻𝒕𝒕 ) in the controlled scenario. The control strategy is designed to retain 
runoff in ponds by maintaining the water level at 80% of the pond capacity 
for 5 hr before reducing it. The control rule is illustrated in Figure 6, where 
the two control time points t5% and tp are determined based on the simulated 
water level in the uncontrolled scenario. Here, t5% is the time step at which the 
simulated water level reaches 5% pond capacity, and tp is the time step when 
simulated water level reaches its peak. The objective is to gradually accumu-
late water to 80% of the pond's capacity during the rising period of the water 
level, which is defined as t5% to tp. It is important to note that this control 
rule is only applied to Ponds 2 to 9. Pond 1, which serves as the system 
outlet, is designed to drain the water with the maximum physical capacity (as 
described in Equation 21) for safety reasons, and therefore, the desired water 
level in this pond is set to zero. To achieve a better control outcome, we tuned 
the values of R and Q in Equation 8 to satisfy the specific control require-
ments (refer to Text S2 in Supporting Information S1 for details). However, 
it is worth noting that finding an optimal control rule is not the focus of this 
paper.

Last, regarding the FDI scenarios, we consider two cases (a) attacking only the sensor of the targeted pond (FDIS) 
and (b) attacking multiple sensors of the targeted pond and its upstream ponds (FDIM). In Equation 16, we set the 
values of p and p a to be 0.95 and 0.99, respectively. We design the attack starting at tp, in which each pond has 
a different attacking start time. Also, to prevent solving a large-scale optimization problem and avoid potential 
numerical issues, we sequentially solved the Mixed-Integer Quadratic Convex Programming (MIQCP) problem 
(Section 2.2.2) every 5 min. For example, the 30-min-FDI problem was divided into six subproblems.

To estimate 𝐴𝐴 𝐴𝐴
𝑠𝑠

𝑊𝑊
 using Monte Carlo simulations, we generate 1,000 realizations of sensor noises and forecasted 

runoffs (i.e., 𝐴𝐴 {𝒗𝒗𝒕𝒕, �̃�𝒘𝒕𝒕; 𝑡𝑡 ∈  } ). We sampled sensor noises from a Gaussian distribution with zero mean and standard 
deviation (σs [cm]) of 0.25 (MaxBotix MB7384, 2023). Additionally, we synthesize forecasted runoffs using a 
multiplicative error model that is commonly used in radar forecast literature (Schleiss et al., 2020):

𝒘𝒘𝒕𝒕 = 𝛽𝛽 × �̃�𝒘𝒕𝒕 × 𝜺𝜺𝒘𝒘 (22)

where β is set to 1 and εw is a vector of random numbers sampled from a lognormal distribution with a median of 
1 and a standard deviation of 0.9 (Schleiss et al., 2020). Since we assume a time-invariant LQG control system 
(i.e., K, Kw, and Kr are fixed constant over a storm event), the standard deviation of εw (σw [cm]) was estimated 
by averaging the standard deviation calculated at each time step for each pond. We simulate runoffs (wt) using 
the SWMM model with design storms of various return periods, including 1, 2, 5, 10, 25, 50, 100, and 200 years.

3.3. Control System Properties—Kalman Gain

The significance of Kalman gain (L) in determining the vulnerability of the system to FDI can be understood 
from Equation 5. This is because L decides the extent to which the false data injection could potentially affect the 
outflow controls (ut) by modifying the estimates (𝐴𝐴 �̂�𝒙𝒕𝒕 ) obtained from LQE. Hence, we can examine the Kalman 
gain to have the initial understanding of the system vulnerability to FDI. In Figure 7, we illustrate the Kalman 
gains for each pond over various combinations of sensor noises (σs) and forecast uncertainties (σw). The height of 
each polar bar represents the value of Kalman gain, with the highest value (gray) being one and the lowest being 
zero. The color gradient indicates the level of sensor noise, while the solid black lines mark the value used in this 
study. The forecast uncertainties increase in the counterclockwise direction, with larger uncertainties associated 
with larger storms (i.e., greater return periods), according to Equation 22.

Figure 6. A control rule for desired water level (𝐴𝐴 𝓻𝓻𝒕𝒕 ). t5% (cross) and tp (star) 
are two control time points determined by the simulated water level reaching 
5% pond capacity and the peak under an uncontrolled scenario. The desired 
water level linearly increases from 0% to 80% pond capacity and maintains for 
5 hr before decreasing.
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The results show that most ponds have high L values, indicating a strong dependence on sensor measurements. 
Ponds 1, 3, and 8 have relatively smaller L values, which suggests that injected false data may have a limited 
ability to cause floods in these ponds. However, to accurately assess the actual impacts and flood risks, it is 
necessary to apply the proposed method.

4. Results
4.1. Flood Risks Solely Due To Cyber-Physical Attacks

This section presents the results of the FDI impact analysis conducted prior to quantifying cyber-physical attack 
risks. The calibrated state-space model has 𝐴𝐴 RMSE𝑛𝑛𝑐𝑐

 and 𝐴𝐴 RMSE𝐶𝐶𝑔𝑔
 equal to 4.49 and 2.30 cm, respectively. We 

compare the water level dynamics of the calibrated model under different scenarios, where the water levels under 
FDIS and FDIM are computed by solving MIQCP problems. Figure 8 shows the water level comparisons of uncon-
trolled (dotted blue line), controlled (dashed brown line), FDIS (orange line), and FDIM (green line) with 25-year 
storm and 30-min attack. Each plot is one independent experiment with different targeted ponds. The nested stem 
plots indicate relative maximum water level differences between controlled and two FDI scenarios of nine ponds. 
Lastly, the red lines represent the control target (i.e., the desired water levels).

The control scenario involved detaining the water in the pond for 5 hr to reduce the peak outflow, resulting in 
a decrease in most ponds’ peak outflows (−0.006 to −0.218 m 3/s) except for Pond 8 (+0.001 m 3/s). Pond 1 
showed the highest reduction (−0.218 m 3/s) due to water detentions in the upstream ponds. This reduction is also 
reflected in Pond 1’s lower water level in the controlled scenario, as shown in Figure 8. Since Pond 1’s desired 
water level was set to zero (red line), it always had the maximum possible outflow. Therefore, a lower water 
level corresponded to a lower outflow. These findings are consistent with previous studies on smart stormwater 
systems (Wong & Kerkez, 2018), which suggest that actively controlling a stormwater system can improve the 

Figure 7. Polar bar chart of Kalman gains (L; heights) over combinations of different levels of sensor noises (σs) and forecast 
uncertainties (σw) for each pond. The largest L is one (gray). The color gradient indicates the level of σs, where the black solid 
lines mark the value used in this study. The term σw increases in the counterclockwise direction.
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utilization of existing infrastructure and accommodate larger storms while reducing erosion impact downstream 
(i.e., lower peak outflow).

However, we demonstrate FDI can lead to floods in a smart stormwater system shown in the results of FDIS. In 
Figure 8, Ponds 2, 4, 5, and 6 are flooded (title with * in the figure) if they are attacked, while Ponds 1, 3, and 
8 show limited water level rise. These results correspond to the Kalman gain properties revealed in Figure 7. In 
addition, the physical properties of each pond also contribute to these results. For example, Pond 8 has a relatively 
large capacity for its inflows, making it difficult to accumulate enough water to reach the desired water level 
represented by the red line. Pond 1 has the largest capacity, meaning that the same volume change may cause only 
a small variation in water level compared to the upstream ponds.

We conducted further tests on the FDIM scenario in a pond that receives inflows from upstream ponds, namely, 
Ponds 1, 3, 6, and 7. While FDI had a limited impact on reducing Pond 1’s outflow, we observed slightly higher 
water levels in FDIM than FDIS. This indicates that larger inflows were generated from upstream ponds due to 
FDI. This observation is further supported by the lower peak water levels in the stem plot, as water is released 
downstream. We also noticed a similar trend in Pond 3, where the green dot is lower in Pond 4 (upstream pond). 
Although the inflows in Ponds 6 and 7 were not significantly increased, the water levels in FDIM are higher than 
FDIS. These results are attributed to the wider attackable range (Err a) resulting from attacking multiple sensors 
(i.e., lower degrees of freedom in χ 2 distribution; Equation 16).

In Pond 8’s stem plot, we found that the downstream pond, Pond 7, has the largest increased peak water level. 
This is because contaminated measurements in Pond 8 also affected Pond 7’s outflow control. In other words, 
Pond 7 is mistakenly convinced that no large inflow was coming from the upstream pond, thus reducing its 
outflow. Although we have explained the reasons behind these control results, it does not necessarily mean 
that we can address each pond’s issue individually. When refining the control system, we need to view it as one 

Figure 8. Water level comparisons of uncontrolled (dotted blue line), controlled (dashed brown line), FDIS (orange line), and 
FDIM (green line) with 25-year storm and a 30-min attack. The control targets are shown in red lines. The nested stem plots 
indicate relative maximum water level differences between controlled and two FDI scenarios of nine ponds. The star signs in 
the subtitle indicate the flooded ponds under FDI. The pond-conduit network is visualized in the upper left corner.
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networked system, and trade-offs may exist. Given the mild differences between FDIM and FDIS in Figure 8, we 
only consider FDIS for the following experiments in this case study.

4.2. Flood Risks of Sensor Noises, Forecast Uncertainties, and Cyber-Physical Attacks

In this section, we analyze the impact of sensor noises and forecast uncertainties (i.e., 𝐴𝐴 {𝒗𝒗𝒕𝒕, �̃�𝒘𝒕𝒕; 𝑡𝑡 ∈  } ) on flood 
risks via Monte Carlo simulations. Figure 9 has a similar layout as Figure 8, but the nested plots are the magnified 
section for attacking periods, and the percentage of 1,000 realizations (represented by gray lines) that experience 
flooding is shown in the subplot title.

We observe that Ponds 4 and 6 experience flooding in all realizations, with or without sensor noises and forecast 
uncertainties. In Ponds 2 and 5, the percentage of floods is not 100% (𝐴𝐴 𝐴𝐴

2

𝑊𝑊
  = 93.3% and 𝐴𝐴 𝐴𝐴

5

𝑊𝑊
  = 99.8%) compared 

to the deterministic scenario (Figure  8). This could be because some realizations have overestimated runoff 
forecasts, leading the control system to increase the outflow, which unintentionally neutralizes the effect of FDI. 
While it may seem like sensor noises and forecast uncertainties reduce flood risks, the probability of over 90% 
flooding is still high. On the other hand, the effect of sensor noises and forecast uncertainties can increase the 
flooding probability of Ponds 7 and 9 (𝐴𝐴 𝐴𝐴

7

𝑊𝑊
  = 1% and 𝐴𝐴 𝐴𝐴

9

𝑊𝑊
  = 38.5%) compared to the deterministic scenario. In 

sum, when considering the effect of sensor noises and forecast uncertainties, the flood risks (i.e., the number of 
ponds experiencing flooding) increase in our case study.

4.3. Flood Risks of Cyber-Physical Attacks Under Different Storm Return Periods

With the aid of Figure 9, flood risks can be computed using Equation 20. As an example, for Pond 9, the PE for the 
25-year designed storm is 0.04. Since the attacker uses all attackable range at each attacking time step (Errt = Err a 
for t ∈ T a) in this particular case, the successful FDI rate (PFDI) is equal to the designed successful FDI rate (i.e., 

Figure 9. Water level variations under sensor noises and forecasted runoffs with a 25-year storm. Water levels in 
uncontrolled, controlled, and FDIS scenarios are shown in dotted blue lines, dashed brown lines, and solid orange lines, 
respectively. The control targets are shown in red lines. Each plot is one independent experiment differing in attacking targets. 
The pond-conduit network is visualized in the upper left corner.
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p a = 0.99). Next, 𝐴𝐴 𝐴𝐴
9

𝑊𝑊
 is 0.385 as we shown in the previous section. Finally, 

flood risks under FDI, 𝐴𝐴 𝐴𝐴
9

𝑐𝑐  , can be calculated as 0.04 × 0.99 × 0.385 = 0.015.

Following the quantification procedure, flood risks were determined for vari-
ous design storm return periods with an attacking length of 35 min (T a = 35), 
as shown in Figure 10. The darker colors correspond to higher risks, while 
the gray color represents zero flood risks. The red boxes denote flood risks 
that are more than 90% contributed by storms. Based on the risk pattern, 
Figure 10 is divided into three regions. The region enclosed by a blue dashed 
line indicates that the flood risks are primarily caused by storms, and the 
pattern is consistent with the intuitive understanding that larger storms result 
in more significant risks. Ponds 1, 3, and 8 are less affected by FDI due to 
their lower Kalman gain (see Section 4.2) and physical characteristics.

On the other hand, the other two regions, divided by black dashed lines, have 
counter-intuitive flood risk patterns. Flood risks are higher with smaller and 
more frequent storms. This pattern suggests that FDI triggers floods that 
were not supposed to occur as significant and affects Ponds 2, 4, 5, 6, 7, and 
9. Additionally, the flood risks shown in Figure 10 are conditional on the 
occurrence of FDI. For instance, flood risks are zero with a 1-year return 
period storm due to the deficiency in stormwater supply in Ponds 2 and 7 
(i.e., the second region). However, given the occurrence of FDI, flood risks 
abruptly increase when surpassing the stormwater supply limits (e.g., 2-year 
and 5-year return period storms) and gradually decrease with large but less 

frequent storms. The decreasing patterns can be explained by the lower occurrence probability of larger storms. 
The third region (i.e., Ponds 4, 5, 6, and 9) is similar to the second region. The difference is that even a 1-year 
return period storm can cause floods under FDI. As a result, the sudden increase in flood risks was not observed 
in the third region. Additionally, the impact of different attack lengths (T a) on flood risks is examined. Flood risks 
generally increase with a longer attack length (Figure S4 in Supporting Information S1). We also compare the 
flood risks with and without FDI in Table S2 of the Supporting Information S1.

5. Discussion
5.1. Defending Strategies

This study evaluates flood risks arising from a specific cyber-physical attack termed FDI on process data, particu-
larly the water level. To address this threat, engineers can focus on achieving an optimal balance between control 
efficiency and error tolerance by modulating the desired water level. Another avenue is to refine the accuracy of 
the prediction model. Techniques such as the extended Kalman filter (Liu et al., 2016), advancements in weather 
forecasting, and the adoption of time-variant adjustments to K, Kr, and Kw can be employed to this end. Funda-
mentally, the efficacy of the FDI hinges on the inherent uncertainty in the control system tied to state estimation.

Nevertheless, these measures do not directly block the intrusion of false data; they merely attenuate its tangible 
consequences. In parallel, the use of anomaly detection algorithms can differentiate false data from ordinary 
sensor noise. Several techniques ranging from fast Independent Component Analysis (Brentan et  al.,  2021), 
support vector machines (Nader et al., 2016), hidden Markov chains (Zohrevand et al., 2016), to information 
theory (Ahmed et  al.,  2016) have been introduced for this task. The realm of data-driven anomaly detection 
remains a fertile ground for further research (Moazeni & Khazaei, 2022). Yet, it’s worth noting that many of 
these investigations are anchored in contexts like water distribution systems (Taormina et al., 2017). There is a 
need to characterize sensor data in stormwater systems as their properties vary across storm events. The inher-
ent uncertainties of natural systems can complicate the crafting of an anomaly detection algorithm tailored for 
stormwater systems.

Moreover, a holistic approach to detecting attacks should encompass not only process data (e.g., water level 
readings) but also traffic data. Even though this study does not delve into traffic data—the digital pulse that 
bridges devices, sensors, and controllers—this information can offer insights into irregular patterns that might be 
indicative of cyber-physical threats. For a comprehensive risk assessment, it’s essential to contemplate diverse 

Figure 10. Heatmap of flood risks under cyber-physical attacks over different 
return periods of 24-hr design storms with attacking lengths (T a) of 35 min. 
The red boxes indicate the corresponding flood risks are over 90% contributed 
by the storms. The gray color indicates zero flood risks. The blue dashed line 
encloses the ponds that have lower Kalman gain (L).
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attack modalities to reveal all potential vulnerabilities in a cyber-physical system. Prior investigations in water 
distribution systems have developed platforms that assess a spectrum of attack vectors, both on process and 
traffic data (Murillo et al., 2023; Taormina et al., 2019). These can set a precedent for subsequent endeavors in 
stormwater systems.

5.2. Limitations

This study lays the groundwork for understanding flood risks in the context of FDI. We employed numerical tests 
based on design storms, acknowledging that real-life rainfall events are inherently uncertain and complex. Vari-
abilities in rainfall patterns and intervals between storms introduce uncertainties in initial water levels and peak 
runoff timings. These uncertainties can significantly alter the flood risks tied to FDI. Addressing these nuances 
is a promising direction for future research.

Our findings operate under the premise that FDI is in play and that potential attackers possess complete 
knowledge of the system. In essence, our analysis presents a worst-case scenario for 100% FDI occurrence. 
It will be extremely difficult, if not impossible, to quantify the occurrence likelihood of when such an attack 
will happen. However, exploring intrusion pathways (Hahn & Govindarasu, 2011; Lippmann & Ingols, 2005) 
and applying motivation-based analyses (Ngafeeson, 2010) to discern the attackers’ incentives might offer 
valuable insights.

Furthermore, our risk assessment approach currently limited to χ 2 detector when determining PFDI. Yet, this 
methodology can be molded to suit other detectors with varying probability distributions, preserving the core 
idea. The risk assessment principles we’ve outlined here may be applicable to other interconnected water systems, 
such as irrigation canals (Conde et al., 2021; Durdu, 2010) and multi-reservoir systems (Georgakakos, 1989; 
Labadie, 2004; Wasimi & Kitanidis, 1983). These referenced studies have illustrated the ability to represent these 
systems using state-space models. In both scenarios, the water level can serve as a primary state with sensor read-
ing. Gate openings or water releases will be the “inputs” in the control systems. Furthermore, both systems are 
subject to some uncertainties that require forecasting. For instance, reservoir inflows carry climate uncertainties, 
while their releases correlate with the dynamics of downstream demand. Similarly, the irrigation canal system 
grapples with uncertainties stemming from both inflows and irrigation demands. With this setup in place, our risk 
quantification approach can be effectively applied.

6. Conclusions
With the growing use of smart technologies in water systems, cybersecurity has become a critical concern. Yet, 
the impact and the risk of FDI attacks in these systems remain understudied. This study proposes a mathematical 
framework to address this gap, applying it to a nine-pond smart stormwater system with water level sensors and 
outflow gate actuators. Using a state-space model, we simulate stormwater dynamics, while a real-time LQG 
controller manages pond outflows. Our methodology assesses the cyber-physical impacts of storms and FDI, 
quantifying flood risks from both FDI and varying storm intensities.

Our results demonstrate the potential consequences of FDI, such as generating a massive inflow peak or mali-
ciously lowering the outflow to increase flood risks. We further reveal how FDI can drastically alter flood risk 
patterns across different storm intensities. Understanding these flood risks in the face of FDI can inform system 
planning and investment decisions. The proposed mathematical framework offers a foundation for evaluating 
defense strategies against potential attacking strategies in future studies. Despite certain limitations, our quan-
tification method can extend to other networked water systems, including irrigation canal and multi-reservoir 
systems.

Data Availability Statement
The resources utilized for this research, including the SWMM model, DDF curve, simulation models, and Gurobi 
optimization models as discussed in Section 2.2.2, are accessible in the Lin et al. (2023) archive. Additionally, the 
Python script used to produce the figures presented in this document can be found in the same Lin et al. (2023) 
reference.
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