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A B S T R A C T   

Managing water resources to meet increasing energy and food demands while maintaining environmental sus
tainability under climate change is a major challenge, especially when this nexus occurred in a coupled natu
ral–human system (CNHS), where heterogeneous human activities affect the natural hydrologic cycle and vice 
versa. The relevant research has been limited by the lack of models that can effectively integrate human dy
namics and hydrologic conditions with spatial details to examine co-evolutionary systems. To address this 
challenge, this paper develops a modeling framework that integrates an agent-based model (ABM; human 
behavior model) into a large-scale, process-based distributed hydrologic model to simulate human decisions 
endogenously in the hydrologic cycle. We then apply the Decision Scaling approach, an ex-post scenario analysis 
method, with our integrated model to study the bidirectional feedback of the CNHS under future changing 
climate conditions. With the Columbia River Basin (CRB) selected as the case study area, the calibration results 
show that the integrated model can simultaneously capture the historical irrigated water consumption and 
streamflow dynamics. Modeling results show that the trade-off between irrigated water consumption, hydro
power generation, and streamflow will become more pronounced under hotter and wetter climate conditions at 
both the entire basin and regional (states and provinces) levels. Special attention should be given to “temperature 
thresholds” of different regions when the trade-off pattern started. The trade-off results can potentially inform 
the Columbia River Treaty renegotiation and provide insights for long-term water management policies.   

1. Introduction 

Managing water resources to meet increasing energy and food de
mands while preserving the environment is a major challenge. Con
ventional water resources management studies overlooked the 
bidirectional feedback (also called co-evolution) between natural and 
human systems, known as the coupled natural and human systems 
(CNHS; Giuliani et al., 2016; Testation et al., 2017; Hung et al., 2022; 
Yang et al., 2020). Consequently, human activities like land use change, 
infrastructure construction, and water uses were modeled as externally 
imposed interventions that drove the environmental changes as “one- 

way forcing” (Wada et al., 2014; Kahi et al., 2018). This model setting 
could miss important dynamics in the real CNHS (e.g., the positive, 
negative, and delayed feedback) that produce unexpected outcomes and 
affect the sustainability of CNHS (Motesharrei et al., 2014; Liu et al., 
2015; Sivapalan et al., 2015; Yoon et al., 2022). Recently, to address this 
issue, the bidirectional interaction between natural and human systems 
have been emphasized while using a hydrologic model and a human 
component to model the interaction mechanism in CNHS. 

Two-way coupling, such as file/data exchange between two models, 
is the most popular method to achieve this interaction in previous 
studies (Hu et al., 2015; Khan et al., 2017; Lei et al., 2019; Lin et al., 
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2022). Human models in these two-way coupled modeling frameworks 
are simulated by different methods, such as Agent-Based modeling and 
Social Network Modeling (Castilla-Rho et al., 2015; Kluger et al., 2020; 
Yoon et al., 2022). For example, Khan et al. (2017) coupled an ABM with 
the Soil and Water Assessment Tool (SWAT), a process-based semi- 
distributed hydrologic model, to simulate the impacts of water resources 
management decision at a watershed scale. Castilla-Rho et al. (2015) 
coupled nature models (e.g., groundwater model or land-use decision 
model) into well-developed ABM platforms (e.g., NetLogo) to illustrate 
potential system responses between natural and human models. Lei et al. 
(2019) coupled an ABM with the MODFLOW groundwater simulation 
model to evaluate the outcomes of market-based versus administrative 
water management strategies. However, the complexity of two-way 
coupled model can lead to significant computational demands. 
Reading, processing, and writing the exchanged files can be inefficient 
and computationally expensive. These limitations can restrict the 
capability of coupled models to simulate complex systems effectively, 
particularly in transboundary river basins characterized by intensive 
human activities (Bhatt et al., 2014; Du et al., 2020). Additionally, 
ensuring precise data exchange and synchronization between the 
models to reflect the dynamic interaction can be challenging. For 
instance, in the absence of an endogenous mechanism to simulate 
human behaviors, there is a reliance on future external water use data, 
and the potential for capturing co-evolution between human and natural 
systems is lost. To accurately simulate the feedback between human and 
natural system, the tight coupling (fully integrated model) by pro
gramming all components (e.g., human and natural systems) within a 
single modeling framework can significantly reduce data exchange 
redundancy and is more suitable for complex water system analysis in 
large river basins. To the best of our knowledge, a fully integrated 
human and natural system model (e.g., a distributed hydrologic model) 
is not very common in previous studies. Integrating a human model into 
the hydrologic framework not only accounts for the dynamic interaction 
between human actions and water systems but also offers a more 
nuanced understanding of how individual and collective behaviors can 
evolve and impact hydrologic processes. 

Furthermore, human water decisions have far-reaching implications 
beyond just the water sector, as water is a vital resource for agriculture, 
energy production, ecosystem. Therefore, decisions regarding water 
management can significantly impact other sectors. In recent years, the 
concept of food, energy, and water (FEW) nexus has been strongly 
promoted as a global research agenda to analyze Sustainable Develop
ment Goals (Leck et al., 2015; Siddiqi et al., 2013). FEW nexus focuses 
on identifying and analyzing the interconnections among sectors in an 
effort to facilitate nexus-wide, rather than a single sector, decision- 
making and promoting more efficient and sustainable resource alloca
tion and use (Bieber et al., 2018; Holtz et al., 2012; Magliocaca, 2020). 
In addition, management of the FEW nexus also needs to consider spatial 
scale issues, as decisions made at one scale can potentially have sub
stantial effects on decisions at other scales, which highlights the need for 
a comprehensive approach to managing the FEW nexus (Reed et al., 
2022; Gaddam et al., 2022). However, this multi-scale aspect is 
commonly underdeveloped in previous FEW studies (Newell et al., 
2019). Many studies (e.g., Vogt et al., 2014, Foran, 2015, Kraucunas 
et al., 2015) prioritized a single spatial scale either from the human 
system perspective (e.g., a city, a state or a country) or from the natural 
system perspective (e.g., a catchment, a watershed or a river basin). 
While some studies have employed multi-regional input–output (MRIO) 
analysis to explore multi-scale issues in the FEW nexus (Nawab et al., 
2019; Siderius et al., 2020), this method may struggle to fully capture 
the dynamic interactions between FEW sectors, particularly when they 
span multiple regions with varying policies and environmental condi
tions. Additionally, the static assumption of MRIO analysis limits its 
ability to evaluate future scenarios and anticipate long-term sustain
ability challenges. This limitation is particularly pertinent in the FEW 
nexus, where understanding the implications of future climate changes 

is vital. The acute and long-term climate stresses can lead to infra
structure or socioeconomic shocks such as outages, supply disruptions at 
different sectors (e.g., energy or water). Moreover, shocks at smaller 
scales can have cascading effects that are transmitted to a larger scale 
through tipping points that trigger critical, propagating changes 
(Holdschlag et al., 2013; Reed et al., 2022). Thus, a new approach 
capable of discerning the dynamic of the nexus, incorporating various 
scales and levels of analysis, recognizing the trade-offs (defined as 
improvement in one sector but deterioration in another) and synergies 
between them, and promoting communication and coordination across 
scales and sectors is needed. 

Motivated by the aforementioned knowledge gaps, this study aims to 
advance our understanding of the co-evolution mechanism in CNHS and 
how this mechanism influences the FEW nexus under climate change 
impacts. The objectives of this paper are (1) developing a distributed 
modeling framework that integrates an agent-based model which sim
ulates spatially distributed human behaviors (i.e., irrigation decisions), 
into a process-based distributed hydrologic model to mimic human 
systems endogenously in the hydrologic cycle, (2) evaluating the inter
action of different sectors (food, energy, water, and environment sector 
represented through ecosystem-related like seasonal flow fraction) by 
using the modeling results from our integrated model to potentially 
inform relevant policies under various climate change scenarios at 
different scales (i.e., basin-wide, state/province or subbasin level). The 
modeling framework is applied to the Columbia River Basin (CRB) that 
crosses Canada and the US as a case study for illustration. The distrib
uted modeling framework can address the computational challenge and 
data exchange issue via the modularized ABM inside an existing hy
drologic model. In addition, the shift from exogenous to endogenous 
irrigation decision, which transitions from an externally coupled model 
to a dynamically simulated one, allows us to evaluate future FEW nexus 
without the need for external water use data. Moreover, the setup of the 
distributed modeling framework can naturally output results from 
regional (defined as states and provinces in this paper) to basin scales 
and identify where potential trade-offs of water use might arise under 
various climate change scenarios. 

The remainder of this paper is structured as follows. Section 2 de
scribes the case study area. Section 3 shows the detailed integrated 
modeling framework and the numerical experiment designs. The results 
are shown in Section 4, followed by the discussion in Section 5. Finally, 
we present our conclusions in Section 6. 

2. Case study – The Columbia river basin 

The Columbia River is North America’s fourth-largest river by flow 
volume. It drains an area of 668,000 km2 and covers portions of seven 
States (Washington, Oregon, Idaho, Montana, Wyoming, Nevada, and 
Utah) in the US and the Canadian Province of British Columbia (Fig. 1). 
Water resources of the Columbia River Basin (CRB) are heavily managed 
to satisfy multiple (often competing) objectives including hydropower 
generation, flood control, agricultural withdrawals, instream flow re
quirements for fish, and recreational needs (Hamlet et al.,2010; Raja
gopalan et al., 2018). Hydropower created by dams along the Columbia 
River and its tributaries provides more than 70 % of the Pacific North
west’s energy needs and account for 40 % of the US hydropower pro
duction (U.S. Energy Information Administration, 2014). However, the 
ability to manage the dams for maximum power production has been 
influenced by the need to increase river flows in the spring and summer 
to protect the salmon population. Furthermore, these in-streams de
mands compete with out-of-stream water uses such as irrigation. Irri
gated agriculture has a significant impact on the CRB’s water resources, 
and agricultural withdrawal is the largest consumptive water use of 
Columbia River with around 14,200 km2 of irrigated area in the CRB 
(Rajagopalan et al., 2018). FEW nexus is particularly sensitive to climate 
change in the CRB. The basin’s natural hydrology, which relies heavily 
on winter snow accumulation and melt, has been disrupted due to rising 
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temperatures (Mantua et al., 2010; Payne et al., 2004). This has resulted 
in decreased snowpack, altered streamflow timing, increased peak 
streamflow, and higher water temperatures (Chang et al., 2013; Luce 
et al., 2014), as well as subsequent effects such as power deficits during 
the summer, reduced salmon survival, and increased various species of 
salmonids’ susceptibility to disease and predators (Chegwidden et al., 
2016; Crozier, 2015; Sauter et al., 2001). 

In this study, the CRB, which features a typical CNHS, will be used as 
the case study to test the proposed integrated modeling framework. In 
particular, we will quantify the FEW nexus under different climate 
scenarios and evaluate how these changes will affect food, energy, water 
and ecosystem sectors at the entire basin and different regions of the 
CRB. 

3. Methodology 

3.1. The hydrologic model - Xanthos 

Xanthos is a global hydrologic model developed to estimate water 
availability at monthly scale (Li et al., 2017; Vernon et al., 2019). Uti
lizing a distributed approach, this Python-based tool operates at a spatial 
resolution of 0.5 degrees (https://github.com/JGCRI/xanthos), 
providing granular insights into monthly water dynamics. The enhanced 
version of Xanthos integrates features accounting for local water with
drawals and reservoir operations, underlining its adeptness at merging 
both natural processes and human influences in water management 
(Abeshu et al., 2023). Its modular design grants users the flexibility to 
customize configurations of its main components, including potential 
evapotranspiration estimation method, runoff generation model, rout
ing model, and subsequent data post-processing. We use Xanthos for our 
modeling framework because: 1) Xanthos’s capability to explicitly 
represent in-stream water infrastructures, such as dams and reservoirs, 

Fig. 1. The boundary, cropland, and major dams of Columbia River Basin modeled in this study. The blue circles are the gauge stations used for calibration and 
validation purpose. The numbers indicate the locations of agents we defined in the Columba River Basin. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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ensures a comprehensive understanding of human influence on 
streamflow dynamics, and 2) The inherent modular architecture of 
Xanthos facilitates its seamless integration with other models, thereby 
broadening its applicability in multifaceted research environments. 

The core of Xanthos includes three modules: potential evapotrans
piration (PET), runoff generation, and river routing. The monthly PET 
can be calculated using different methods including the Penman- 
Monteith, Hargreaves-Samani or Thornthwaite method (Note: 
Penman-Monteith, which is widely recognized for its accuracy in various 
climates, is applied in this study, and this method considers factors such 
as temperature, humidity, wind speed, and solar radiation to provide a 
comprehensive estimation of PET). The runoff generation module 
(ABCD hydrologic model) uses monthly PET, precipitation (P) and 
maximum/minimum air temperature as inputs and defines five param
eters “a”, “b”, “c”, “d” and “m” that reflect hydrologic regime charac
teristics (Liu et al., 2018; Sankarasubramanian & Vogel, 2003; Thomas, 
1981) to simulate monthly water fluxes (e.g., runoff, groundwater 
recharge) and pools (e.g., soil moisture, groundwater) in the grid cell. 
The river routing module includes a cell-to-cell river routing scheme 
adopted from the modified river transport model (MRTM), which uses a 
linear advection formula to calculate the outflow leaving the grid cell to 
its downstream neighboring (Zhou et al., 2015). Abeshu et al. (2023) 
improved Xanthos by adding a channel velocity adjustment coefficient, 
η, in MRTM to account for the uncertainties in the channel velocity field 
and introducing a water management module that represents local 
human water uses and reservoir activities. Monthly local human water 
uses for different purposes such as domestic, electricity, and irrigation 
are exogenous inputs and simply subtracted from the total runoff and the 
remainder of the runoff is discharged into the channels and routed 
downstream through MRTM. Reservoir operation is described based on 
the main purpose (e.g., irrigation, hydropower, flood control) of each 
reservoir. For irrigation and flood-control reservoirs, the reservoir ca
pacity reduction factor, ε, was applied to the final release function of the 
reservoirs. For hydropower reservoirs, the release policies are derived 
using stochastic dynamic programming. The underlying equations and 
detailed algorithms are described in Abeshu et al. (2023). All the grid
ded global monthly climatic data, including precipitation, maximum 
temperature, and minimum temperature, were sourced from the WATer 
and global CHange (WATCH; Weedon et al., 2011) dataset. We incor
porated global reservoir data sourced from the Global Reservoir and 
Dam (GRanD) dataset (Lehner et al., 2011). The monthly water use data 
for various sectors, presented at a spatial resolution of 0.5 degrees, were 
obtained from Huang et al. (2018). 

To apply the global-scale Xanthos in our case study area, CRB, and 

integrate with an ABM, three modifications are needed: (1) tailoring the 
Xanthos’s geographical focus to specifically include only the CRB; (2) 
changing the river routing units for smaller subbasins; (3) converting 
human water use component from exogenous to endogenous. For the 
first modification, we only model the 336 grid cells that cover the CRB 
domain out of the global land grid, which comprises 67,420 cells, to 
reduce computational time. For the second modification, we delineate 
41 different subbasins inside the CRB following the Fish and Wildlife 
Program from Northwest Power and Conservation Council (NPCC, 2005, 
shown in Fig. 1). Each subbasin will have different calibrated values for 
the Xanthos parameters listed in Table 1. The third modification is the 
main scientific contribution of this study. The human water use 
component (Huang et al., 2018) is originally treated as exogenous inputs 
in Xanthos. However, this setting limits us from evaluating the co- 
evolution of human and water systems. To overcome this limitation, 
we integrate an ABM (details in the next two sections) into Xanthos and 
calculate the human water use component endogenously. 

3.2. The human behavior model - ABM 

In this study, we only focus on irrigation decisions by farmers in the 
ABM, given that agriculture significantly impacts water consumption 
within the CRB. While we currently emphasize agricultural water use, 
the scope for incorporating other water users, such as those for hydro
power and municipal needs, remains open for future research en
deavors. The CRB was segmented into 41 distinct subbasins in this study. 
We define farmers or farmers groups inside these subbasins as agents. 
And for the simplicity purpose, the current model only sets up one agent 
in each subbasin. An agent’s water usage is the aggregated irrigation 
water consumption in the subbasin. Every year, agents need to develop 
their cropping plans for the coming year and their decision-making 
process may be influenced by economic (e.g., crop price), social (e.g., 
labor), and environmental (e.g., nutrient management) considerations. 
Studies also suggested that past climate and hydrologic conditions can 
influence farmers’ water use decisions (e.g., Eisele et al., 2021; Lizumi 
et al., 2015). For simplicity, this study only focuses the discussion on 
irrigated water consumption by encapsulating the consideration into 
two variables, agent’s past experience and future water availability. 
Given that most farms are primarily focused on profitability (English 
et al., 2002; Khanal et al., 2021), we assume agents are profit-driven, 
and their goals are to increase crop production by maximizing irri
gated water consumption. It is important to note that this assumption 
should be used with caution, as it may not fully capture the complexities 
and varied motivations in agricultural practices (Featherstone et al., 

Table 1 
Calibrated parameters for Xanthos.  

Parameter Description Range 

a Propensity of runoff to occur before the soil is fully saturated [0,1] 
b* Upper limit on the sum of evapotranspiration and soil moisture storage [0,4000] 
c Degree of recharge to groundwater [0,1] 
d Release rate of groundwater to baseflow [0,1] 
m Snowmelt coefficient [0,1] 
η Velocity adjustment coefficient [0,10] 
ε Reservoir capacity reduction factor [0.5,1] 

*The unit for this parameter is mm. 

Table 2 
Calibrated parameters for ABM.  

Parameter Description Range 

α0 Farmer’s initial prior knowledge about next year is a wet year (0,20] 
β0 Farmer’s initial prior knowledge about next year is a dry year (0,20] 
e Cost factor for water consumption [0,1] 
γ The percentage of total water availability farmers think they can use [0,1] 
f The ratio of next year precipitation farmers think they cannot use [0,1]  
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1995; Salimonu et al., 2007; Alderman et al., 2007; Olarinde et al., 
2008). The current study does not explicitly simulate agricultural ac
tivities (e.g., crop selection, double cropping, and crop area) and market 
mechanisms (e.g., crop price) but use irrigated water consumption as a 
proxy of crop production. More detailed discussions about our ABM 
limitations are provided in Section 5.2. 

In our ABM, when water is scarce, agents may consider reducing 

their water consumption in response to the potential water shortage. 
Every agent has five parameters describing their decision-making pro
cess that need to be calibrated (Table 2). In our design, agents’ decision- 
making involves three steps as indicated by the numbered circles in 
Fig. 2. The first two steps are the Bayesian inference for estimating the 
probability of future water availability, and the third step is an opti
mization process that utilize the probabilistic information to maximize 

Fig. 2. Agents’ decision-making process at the annual timescale. Numbered circles represent three steps. Step 1: agents estimate the probability that they believe the 
next year is a wet year. Step 2: agents estimate water availability conditions for the following year based on Step 1. Step 3: agents decide how much water they need 
for irrigation in the next year driven by the economic value of their crop production. 
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irrigated water consumption. The standard Overview, Design concepts, 
and Details + Decision (ODD + D) description (Müller et al., 2013) for 
the ABM (Table S1) is provided in the Supplementary Materials. 

In step 1, agents estimate the probability that they believe the next 
year is a wet year (i.e., water availability larger than the long-term 
average). This estimation draws on literatures that show farmers’ ca
pacity to recognize and integrate historical climate trends (e.g., wet or 
dry condition) into their decision-making process (Gadqil et al., 2002; 
Moyo et al., 2012), and Harrell et al. (2022) indicated that the irrigation 
pattern is different in dry year and wet year in the CRB. The water 
availability observed by each agent depends on its location within the 
river network. Headwater agents’ water availability is defined as the 
total runoff generated inside the subbasin. Non-headwater agents’ water 
availability is calculated as the sum of the runoff within their subbasins 
and the streamflow from all upstream subbasins. We apply the Bayesian 
inference approach in Eq. (1) to update agents’ wet year beliefs of next 
year. Eq. (1) shows a generic expression of Bayesian inference. 

P(π|x)∝f (x|π) × P(π) (1)  

where π is a random variable representing the probability of the next 
year being a wet year and it depends on x which is the observed number 
of wet years in the past n years (n = 10 years in the case study). P(π) is 
the agents’ prior distribution of π. The likelihood function f(x|π) is the 
probability that x is observed. P(π|x) is the posterior distribution of π 
after taking into account the observed x. In our simulation, this resulting 
posterior in the current year will be the prior in the next year, which is 
an iterative process to update the agents’ beliefs. Moreover, the design of 
this updating process emphasizes the agent’s recent experience, which 
represents their short-term memory of recent climate anomalies (n 
years). Practically, a wet or dry year will be applied to the updating 
process for n times, and thus the recent experience will carry a higher 
weight through the updating process. We use the Beta distribution (Eq. 
(2)) to describe the agents’ beliefs in the probability of wet year since it 
is particularly useful for modeling probabilities that are based on limited 
or subjective information, like personal beliefs or experiences (O’Hagan, 
1998). 

P(πi) ∼ Beta
(
α0

i , β
0
i

)
(2)  

where P(πi) is the probability distribution of agent i’s beliefs that the 
next year is a wet year. α0

i and β0
i are initial shape parameters of the Beta 

distribution. Following the setting by Ng et al. (2011), weather-related 
variables (to describe the occurrences of climatic events) can be 
assumed to be binomially distributed. We use this assumption for the 
likelihood function in Eq. (3) to describe the occurrences of wet years: 

f (xi|πi) ∼ Bin(n, πi) (3)  

where xi represents the number of wet years that agent i observes within 
a n-year period which means the agents only consider their observation 
in the past n years and experience beyond that has little influence on 
their water availability perception. The posterior distribution is also a 
Beta distribution (Eq. (4)) with updated shape parameters α′

i and β′
i. We 

can apply Eq. (5) and (6) to update the posterior distribution because 
Beta distribution is conjugate to Binomial distribution (Press, 2002). 

P(πi|xi) ∼ Beta
(
α’

i , β
’
i

)
(4)  

α′
i = α0

i + xi (5)  

β′
i = β0

i + n − xi (6)  

In our study, α0
i and β0

i (shown in Table 2) represent the agents’ prior 
expectation (a degree of belief) about the relative likelihood of the next 
year being a wet year versus dry year, respectively. For example, when 
α0

i is larger than β0
i , it means the agent starts with a belief that the next 

year is more likely to be wet than dry. We obtained the posterior dis
tribution of πi and would still like to have a single estimate π̂i for πi. The 
posterior mean and posterior mode are commonly used as Bayesian 
estimate π̂i for πi. In this study, we choose the posterior mean (Eq. (7)) as 
estimator, which is the probability that agents i believes the next year 
being a wet year: 

π̂i =
α′

i

α′
i + β′

i

(7)  

One issue in the Beta distribution updating for human behaviors is that 
α′

iand β′
i values increase when the number of observations accumulates 

(Eqs. (5) and (6)). This phenomenon will dilute the information pro
vided by new observations. For example, if α0

i and β0
i are both “1″, the 

prior mean is π̂0 = 0.5, and we observed two wet years in the recent 10 
years (xi = 2). The updated posterior mean is π̂i = 0.25, which is a 
decrease of 0.25. Whereas if α0

i and β0
i are both “20”, the prior mean is 

still π̂0 = 0.5. But the two wet-year observations will only update the 
posterior mean π̂i = 0.44 (a decrease of 0.06). This example shows that 
the new observation’s effect on the posterior depends on the sum of α0

i 

and β0
i and will decrease over time as more observations are received. 

Essentially, it means that the agents remember all the events, each event 
affects the agents’ decision-making equally regardless of when it 
happened, and the effects of individual events decrease as the agents 
accrue more data. However, this contradicts the scientific understanding 
of how the human brain works. Literature has pointed out that human 
memory is limited, and the newer events have a stronger effect on 
humans’ perception (Khalvati et al., 2019). To address this issue, we 
assume that the sum of α0

i and β0
i represents an agent’s memory length 

and fix the memory length throughout the simulation (i.e.,α0
i + β0

i =

constant). We applied a constant decay rate σi (0 ≤ σi ≤ 1) to the prior 
in the Bayesian updating process to account for the memory fading ef
fects, as shown in Eqs. (8) and (9): 

α’
i = σi×

(
α0

i + xi
)

(8)  

β’
i = σi ×

[
β0

i + (n − xi)
]

(9)  

Eqs. (8) and (9) are plugged into Eq. (7) to obtain the estimated prob
ability that agent i believes the next year being a wet year. The decay 
rate and modified process give a higher weight to recent observations 
compared to the distant past. Individual agents’ memory length can 
differ from agent to agent. Hence, we constructed Eq. (10) to determine 
the agents’ decay rate σi based on the observation size (n; n = 10 in this 
case study) and initial α0

i andβ0
i , which is determined by model 

calibration. 

σi =
α0

i + β0
i

α0
i + β0

i + n
(10)  

The decay rate design ensures the shape parameters sum of the posterior 
(α′

i +β′
i) equals to that of the prior (α0

i + β0
i ). 

In step 2, agents estimate water availability conditions for the 
following year based on their beliefs of the next year is a wet year from 
step 1 (π̂i). In cognitive science, mixture distributions are utilized to 
model how different cognitive processes jointly influence the behavior 
on task-based activities (Cole and Bauer, 2016; Nicenboim et al., 2021). 
By using a mixture distribution in step 2, farmers can incorporate 
different water availability conditions into their planning and decision- 
making processes. We used Wt and Dt to represent an agent i’s beliefs of 
the water availability distribution of the wet and dry years, which are 
constructed by the Empirical Cumulative Distribution Function (ECDF) 
with observation. The ECDF is constructed from the historical records of 
water availability for wet and dry years. The mixture water availability 
distribution of agent i can be calculated by Eq. (11). 
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NDi,t+1 = π̂i ×
(
Wi,t × γi

)
+ (1 − π̂i ) ×

(
Di,t × γi

)
(11)  

where NDi,t+1 is the water availability distribution that agent i thinks it 
can use in the next year, and the parameter γ ∈ (0, 1) represents the 
additional constraints that prevent the agents from accessing all the 
available water such as water rights and conveyance losses. π̂i is the 
probability that agent i’s beliefs the next year is a wet year, and (1 − π̂i)

represents the probability that agent i’s beliefs the next year is a dry 
year. For example, let us consider an agent i who estimates the proba
bility of the upcoming year being wet from step 1 is 0.3. Consequently, 
the belief in the next year being dry is 1 − 0.3 = 0.7. The agent then 
allocates weights based on these probabilities to respective water 
availability distributions for wet (Wi,t) and dry (Di,t) years. Additionally, 
the agent takes into account external constraints, γi = 0.6, which limit 
the utilization of available water resources. Therefore, the anticipated 
water availability distribution for next year’s irrigation, NDi,t+1, is 
calculated as NDi,t+1 = 0.18× Wi,t + 0.42× Di,t. Eq. (11) represents the 
weighted sum of water availability under both wet and dry conditions, 
adjusted for the external constraints. To enhance readability and facil
itate comprehension of the analysis, we will omit indices i and t in the 
subsequent equations. 

In step 3, agents will decide how much water they need for the 
irrigation in the next year driven by the economic value of their crop 
production while considering the risk of water shortage. For simplicity, 
detailed simulation of agricultural activities and market dynamics are 
not considered. Instead, irrigated water consumption is employed as an 
indicative measure of crop production. An agent’s reward function (R) is 
defined in Eq. (12) where a penalty term (e × Irr) is introduced to 
farmers’ production function to represent the economic costs (e.g., the 
sunk costs of fertilizers). 

R =

{
Irr − e × Irr, if ND > Irr

ND − e × Irr, if ND ≤ Irr
(12)  

where Irr is irrigated water consumption decision for the next year. e is a 
cost factor, and the range is from 0 to 1. ND is obtained from the new 
water availability distribution from Eq. (11). This function exhibits 
asymmetry. In years with ample water (ND > Irr), the function reflects 
the agent’s expected profit. Conversely, during water-scarce years 
(ND ≤ Irr), the overestimation of water availability introduces a sunk 
cost, adversely impacting the agent’s overall profitability. An agent’s 
objective is to choose an Irrmax to achieve a better expected value of the 
reward (Eq. (13)). 

E[R] =
∫ Irr

0
(ND − e × Irr)f (ND)dND +

∫ +∞

Irr
(Irr − e × Irr)f (ND)dND

(13)  

Reorganizing Eq. (13), we can get: 

E[R] = (Irr − e × Irr) +
∫ Irr

0
(ND − Irr)f (ND)dND (14)  

Irrmax = argmax E[R] (15)  

where f(ND) is the probability corresponding to the water availability 
distribution of ND. 

Furthermore, we assume the next year’s precipitation forecast will 
affect the agent’s irrigated water consumption and they can obtain the 
next year’s precipitation forecast from public information sources. In 
this study, the precipitation information is from WATer and global 
CHange (WATCH; Weedon et al., 2011). Part of the direct precipitation 
(Precip) can be used for crop water needs depending on its timing and 
volume. If rain falls outside of the cropping season, the water volume 
does not contribute to satisfy crop water needs. Therefore, an agent’s 
actual irrigated water consumption (IWC) is calculated by subtracting a 
fraction of precipitation from Irrmax (Eq. (15)) where f ∈ (0, 1) repre
sents the ratio of rainfall that cannot be used for irrigation. 

IWC = Irrmax − Precip × f (16)  

3.3. ABM and Xanthos integration 

In this study, ABM and Xanthos are integrated at the source code 
level, i.e., ABM is integrated into the relevant module of Xanthos. The 
internal data exchanged between Xanthos and ABM are (1) agents’ 
water use (irrigated water consumption from ABM), and (2) hydrologic 
condition (streamflow from Xanthos) at the annual time step. Note that 
we assume the subsequent year’s precipitation forecast influences the 
agent’s irrigated water consumption, rendering the precipitation data 
external to the ABM. The integrated model is simulated at a monthly 
time scale to capture the seasonal irrigated water consumption patterns 
and how that affects FEW nexus. The workflow of the integrated model 
is shown in Fig. 3. Xanthos is initialized to compute the natural hydro
logic processes, including potential evapotranspiration, surface runoff, 
and streamflow at the monthly scale. The resulting streamflow is first 
aggregated to annual scale and fed to ABM to calculate the agent’s 
annual irrigated water consumption. After determining the agent’s total 
irrigated water consumption for the coming year using the algorithm in 

Fig. 3. The workflow of integrated ABM-Xanthos. The green line represents the original Xanthos, and the solid green boxes of “PET”, “ABCD”, and “MRTM” rep
resents the core modules of Xanthos. The blue line is the ABM, and the blue boxes summarize agents’ behavior rules, which are detailed in Fig. 2. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2, we use the historical pattern of monthly irrigated water uses data 
to allocate annual irrigated water consumption back into the monthly 
scale. Finally, the monthly total water uses of each subbasin (irrigation, 
domestic, cooling of thermal power plants, etc.), which are the input 
data for Xanthos, are calculated by adding the monthly irrigated water 
consumption with the monthly water uses in other sectors from Huang 
et al. (2018). Note that in our current integrated model, the focus is on 
irrigated water consumption. Therefore, we assume that the monthly 
water uses in other sectors will remain the same as the historical aver
aged values. 

We use the historical streamflow data from five US Geological Survey 
gauge stations (blue circles in Fig. 1) and irrigation water uses from 
Huang et al. (2018) to evaluate the performances of the integrated ABM- 
Xanthos model. The calibration period is from 1971 to 1990 and the 
validation period is from 1991 to 2001. The Kling-Gupta efficiency 
(KGE, Gupta et al., 2009) and its modified version (KGE’, Kling et al., 
2012), with a range from negative infinity to “1″ (i.e., a perfect model), 
are used as the main indicators to judge model performances. 

3.4. Numerical experiment designs 

To quantify the highly uncertain future climate change effects on 
irrigated water consumption, hydropower generation, and streamflow 
at different spatial scales, we apply the decision-scaling framework as 
proposed by Brown et al. (2012). This ex-post scenario analysis method 
focuses on identifying acceptable system performance in a broad range 
of future climate conditions rather than focusing on projections of future 
climate that are subject to uncertainties in various climate modeling and 
downscaling approaches. To evaluate a wider range of climate changes 
beyond what is projected to the basin according to the full ensemble of 
General Circulation Model (GCM) projections, the monthly historical 
precipitation (P) and temperature (T) record (1972–2001) are resam
pled and perturbed to construct 30-year monthly time series of P and T 
representing plausible future climate changes. Specifically, temperature 
increases range from 0 ◦C to 7 ◦C with 1 ◦C increments added to the 30- 
year resampled temperature monthly data, and precipitation changes 
ranging from − 30 % to +30 % with 10 % intervals are used as a 
multiplier for the precipitation monthly data. These changes in P and T, 
yielding 7 precipitation and 8 temperature conditions respectively, lead 
to 56 representations of climate changes. The 56 representations are 
used as inputs to the integrated model. We repeat the procedure of 
resampling the historic record 30 times (with each of the 30 samples 
referred to as a single “trial”) to address the internal climate variability. 
Each trial represents one plausible climate condition for the next 30 
years. The 56 climate change representations along with each trial of the 
resampled 30-year climate bring the total number of simulations 
involved in this study to 1680 (30 × 56). The GCM projections under 
Coupled Model Intercomparison Project 5 (CMIP 5) scenarios: Repre
sentative Concentration Pathway (RCP) 2.6, 4.5, 6.0 and 8.5 were used 
to inform the likelihood of future climate conditions. The RCPs describe 
four different scenarios based on different assumptions about popula
tion, economic growth, energy consumption and sources and land use 
over this century (Van Vuuren et al., 2011). A list of all GCMs employed 
in this study, under each RCP, has been provided in the Supplemental 
Materials (Table S3). 

We applied the concept of elasticity to quantify the nexus between 
irrigated water consumption (the proxy of the food sector), hydropower 
generation (the proxy of the energy sector), and streamflow (the proxy 
of the water and environment sector). Elasticity is a measure of a vari
able’s sensitivity to a change in another variable (Schaake, 1990; San
karasubramanian et al., 2001). In this study, we evaluate the irrigated 
water consumption impact on streamflow and hydropower generation at 
different spatial scales under the 56 climate change representations. The 
irrigated water consumption (IWC) elasticity of streamflow (Q), εIQ, and 
IWC elasticity of hydropower generation (HP), εIH, are calculated by Eqs. 
(17) and (18). 

εIQ =

Qfuture, j − Qbase

Qbase

IWCfuture, j − IWCbase

IWCbase

(17)  

εIH =

HPfuture, j − HPbase

HPbase

IWCfuture, j − IWCbase

IWCbase

(18)  

where Qfuture, j, HPfuture, j, and IWCfuture, j are average annual streamflow, 
hydropower generation and irrigated water consumption under climate 
change scenario j. Qbase, HPbase, and IWCbase are average annual 
streamflow, hydropower generation, and irrigated water consumption 
from the baseline scenario (0◦ C change in temperature and 0 % change 
in precipitation). In our study, εIQ and εIH can fall into one of four types: 
(1) elasticity value > 1 (no trade-off) means that IWC is elastic and 
changes in Q (or HP) is more than proportionally getting impacted by a 
variation in IWC, (2) elasticity value < -1 (trade-off exist) means that 
IWC is elastic and the decrease or increase in Q (or HP) is more than 
proportionally getting impacted by an increase or decrease in IWC, (3) 
− 1 < elasticity value < 1 means that IWC is inelastic and Q or HP is 
relatively insensitive to IWC, (4) elasticity = 1 or = -1 means that IWC is 
unit elastic and changes in IWC result in an equal change in Q and HP. 
For a detailed illustration of the methodology applied to calculate 
elasticity across different sectors under varying climate conditions, refer 
to Fig. S1 in the Supplementary Materials. This figure provides a sche
matic representation of the analytical process, using IWC and HP as 
exemplars, it visually presents the calculation of IWC elasticity of HP 
under various climate scenarios. 

4. Results 

4.1. Calibration and validation of the integrated model 

Fig. 4 shows that the overall performances of Xanthos’ streamflow 
results at five stations are close to or greater than 0.5, which represent 
reasonable calibration and validation results. An exception was noted 
for the Grand Coulee station, with a lower KGE and KGE’ value (0.47). 
Due to the real-world complex reservoir operation rules for multiple 
purposes of irrigation, hydroelectric generation, and flood management, 
the current reservoir component in Xanthos cannot capture 100 % of the 
reservoir releases of the Grand Coulee dam. However, this bias does not 
significantly affect streamflow further downstream. Therefore, the 
calibration and validation results of Xanthos are acceptable for our 
purpose. Fig. 5 shows the calibrated and validated results for agents with 
the largest irrigated water consumptions. Most KGE and KGE’ values are 
higher than 0.5 which indicate our model can generally capture the 
pattern and trend of historical irrigated water consumption. The results 
of other agents with smaller irrigated water consumption are in the 
Supplementary Materials (Fig. S2). Although the modeled irrigated 
water consumptions are “less accurate” compared to the observation 
data, these endogenously calculated irrigated water consumptions allow 
us to explore the bidirectional interactions between the human and 
natural systems and how those interactions affect the FEW nexuses, as 
long as the trend and pattern of human decisions can be reasonably 
captured. Furthermore, this change will allow us to further apply this 
integrated model for future FEW nexus evaluations while no future 
water uses data is needed. This is the major difference of our integrated 
model compared the models used in previous studies (Voisin et al., 2013; 
Wada et al., 2014; Kahi et al., 2018). 

4.2. Multiple sectors result at the basin scale 

The impact of climate change (i.e., different precipitation and tem
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Fig. 4. The calibration and validation results of five streamflow stations in the CRB: The Dalles, Grand-Coulee, Below Ice Harbor, International Boundary-2, and Near 
Anatone. Blue lines are for observed streamflow data. Green lines and red lines represent calibrated and validated results, respectively. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. The calibration and validation results of example agents in the CRB. Blue lines are for observed irrigated water consumption. Green lines and red lines 
represent calibrated and validated results, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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perature) on annual irrigated water consumption (km3), annual hydro
power generation (GW) and annual streamflow (m3/s) are shown in the 
Supplementary Materials (Fig. S3). However, these results do not 
explicitly demonstrate the trade-offs among these sectors. Therefore, 
Fig. 6 uses heat maps of climate response surface (Brown et al., 2012), 
which are two-dimensional diagrams depicting the patterns of related 
model outputs under different combinations of temperature and pre
cipitation changes, to illustrate the impacts of climate change on basin 
scale elasticity between different sectors. Fig. 6a and b show the average 
annual irrigated water consumption elasticity of the average annual 
streamflow (εIQ) and the average annual irrigated water consumption 
elasticity of the average annual hydropower generation (εIH), respec
tively. The distinct columns (1), (2), and (3) indicate different periods of 
calculation: the entire year, the growing season (April to September), 
and the non-growing season (October to March). Different color scales 
represent positive or negative elasticity values. The white color indicates 
elasticity value between “1″ and “-1.” The smaller size of the colored grid 
indicates the average annual irrigated water consumption is lower than 
the baseline level. The baseline elasticity values of these climate 
response surfaces are for 0 ◦C temperature change and 0 % precipitation 
change and their corresponding grids in Fig. 6 are shown as blank. All 
the y-axis and x-axis of heat maps indicate the temperature changes and 
precipitation changes, respectively. Furthermore, downscaled GCM 
projections of CMIP 5 scenarios: RCP 2.6, 4.5, 6.0 and 8.5 (different dots 
in Fig. 6) from different years (2041–2070 in orange and 2071–2100 in 
red) are superimposed on these climate response surfaces to visualize 

the likelihood of the future climate change range. The results show that 
all GCMs project some warming ranging from 1 ◦C to 5 ◦C in 2041–2070 
and from 1 ◦C to 7 ◦C in 2070–2100. Projected changes in mean annual 
precipitation range from 5 % decrease to about 16 % increase in 
2041–2070, and from about 5 % decrease to 23 % increase in 
2070–2100. Overall, the result from the CMIP5 ensemble suggests a 
warmer and wetter future in the CRB. 

All elasticity values in Figs. 6a-1 and b-1 are positive, indicating no 
trade-off between streamflow and IWC or HP and IWC when we calcu
late elasticity for the entire year. In addition, these two figures show 
higher positive elasticity values under increased precipitation change 
(10 %, 20 %, 30 %) combined with warmer temperature (from 3 ◦C to 
7 ◦C), especially when precipitation increase of 10 % is combined with a 
temperature increase greater than 4 ◦C. Given that this is the climate 
change range suggested by GCMs, a minor increase/decrease in IWC can 
result in sensitive streamflow and hydropower increase/decrease in the 
most likely future. Figs. 6a-2 and b-2 show the results of the growing 
season. We observe positive values of εIQ and εIH under dry scenarios 
(precipitation change from 0 % to − 30 %) which means no trade-off. 
The positive values mean a decrease in streamflow and HP will be 
more sensitive to a decrease in IWC under these dry conditions. One 
possible explanation is that the water availability is drastically dimin
ished under these conditions and observed by our agents to reduce their 
IWC. Despite this, the dry conditions continue to have a significant 
impact on streamflow and hydropower generation. On the other hand, 
we also observe negative values of εIQ and εIH when precipitation 

Fig. 6. Climate response surfaces for elasticity on basin-wide irrigated water consumption, streamflow, and hydropower generation. Superimposed points show GCM 
projections obtained from the CMIP5 ensemble (orange color represents climate projections: 2041 – 2070; red color represents climate projections: 2071–2100). 
Circles, triangles, squares, and diamonds represent RCP 2.6, 4.5, 6.0 and 8.5 respectively. IWC and HP represent Irrigated water consumption and hydropower 
generation, respectively. The smaller size of the colored grid indicates the average annual irrigated water consumption is lower than the baseline level. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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increases by just 10 % combined with a temperature change greater than 
4 ◦C which mean there are trade-offs in these climate conditions. This 
result means that both streamflow and HP can significantly fall below 
the baseline levels under these conditions while IWC would remain 
above baseline levels. These findings have important implications for 
water resource management. For example, implementing strategies to 
reduce IWC and increase water use efficiency, such as encouraging the 
use of more efficient irrigation technologies in the growing season will 
be very helpful in mitigating these trade-offs. When precipitation in
creases more than 10 %, these trade-off patterns disappear since more 
water become available in the basin. Figs. 6a-3 and b-3 show the results 
of the non-growing season. There are positive elasticity values of εIQ and 
εIH under wet scenarios (precipitation change from 10 % to 30 % and 
temperature change from 1 ◦C to 7 ◦C) which, again, means no trade-off. 
These results mean that significant increases in streamflow and hydro
power generation are more sensitive to IWC increase under these wet 
conditions. This is the opposite reason compared to what we have in the 
growing season. Since water availability is drastically increased under 
wet conditions, while our agents observed this pattern and slightly in
crease their IWC, the increase in streamflow and hydropower are more 
substantial than IWC increases. More importantly, the non-growing 
season results show that there is a trade-off between streamflow and 
IWC or HP and IWC when no change in precipitation is combined with a 
temperature change greater than 3◦ C, which means that the IWC 
decrease below baseline levels (i.e., smaller color grids) while both 
streamflow and HP increase during these scenarios. One explanation is 
the accelerated snowmelt in mountainous regions due to rising tem
peratures. This early snowmelt augments streamflow during the non- 
growing season, leading to a potential increase in hydropower genera
tion. Detailed results elucidating the shift in peak flow due to the early 
snowmelt are available in the Supplementary Materials (Figs. S4 and 
S5). Despite the increasing water availability in the non-growing season, 
the overall water availability throughout the entire year experiences a 
decline due to increasing evapotranspiration caused by increasing 
temperature. Since agents in the current model use annual water 
availability and precipitation to determine IWC, consequently their 
annual decisions lead to a slight decrease in IWC during the non-growing 
season and result in this trade-off. 

GCMs result from 2041 to 2100 in Fig. 6 also reveals important in
sights regarding the timing of potential trade-offs between the food, 
water, and energy sectors. Specifically, the projected climate conditions 
during 2041–2070 indicate that trade-offs between sectors are not very 
clear in this time period (i.e., no red grid overlaps with orange dots). 
This outcome implies that the existing water infrastructure or regulatory 
policies might be able to address the water demand conflicts in this 
timeframe. However, the likely future climate during 2071–2100, 
especially for RCP6.0 (red square) and RCP8.5 (red diamond), may 
result in a clear trade-off between sectors (i.e., red grids overlap with red 

dots). To mitigate these potential water demand conflicts, the existing 
regulation plans might need some modification, which could involve 
revising the allocation strategies and exploring innovative approaches to 
balance the needs of various sectors. 

Alternatively, we can also demonstrate the trade-off between 
different sectors in the Pareto front format. For example, Fig. 7 uses the 
x-axis to show hydropower generation change and the y-axis to show 
irrigation water consumption change. We use different colors to repre
sent different temperature increases and different symbols to represent 
different precipitation changes. The plots have four different zones and 
only the scenarios located in Zones I and IV indicate trade-off (i.e., one 
sector goes up, another goes down). For example, trade-off exists in Zone 
I when IWC increases, and HP decreases in the growing season. We also 
observed trade-off in Zone IV when IWC decreases, and HP increases in 
the non-growing season. For the entire year, no future scenarios result in 
any trade-off between IWC and HP. 

4.3. Multiple sectors result at the regional scale (IWC vs. HP) 

Section 4.2 provides the basin-wide relationship between irrigation, 
streamflow, and hydropower generation. In this section, we present 
results aggregated from subbasins level (i.e., agent) for four U.S. states: 
Washington (WA), Oregon (OR), Idaho (ID), and Montana (MT), and one 
province in Canadian: British Columbia (BC) inside the CRB to show the 
spatial heterogeneity among different regions (i.e., multiple scales). We 
highlight the changes in IWC and HP in these areas as demonstrations. 
Similar to Fig. 6, we also use heat maps of climate response surface to 
show the impacts of climate change on the regional scale elasticity be
tween IWC and HP based on our integrated model. Fig. 8a to e represent 
the average annual irrigated water consumption elasticity of the average 
annual hydropower generation (εIH) for WA, OR, ID, MT and BC, 
respectively. All other settings are similar to Fig. 6. 

Looking at the results for the entire year (Fig. 8a-1 to e-1), all of the 
elasticity values for WA and OR are positive, indicating that these two 
states located in the downstream portion of CRB will not experience a 
trade-off between IWC and HP due to climate change. On the other hand, 
when precipitation increases by 10 % and temperature increase by more 
than 2 ◦C, upstream states (ID and MT) and Canada (BC) will see some 
trade-offs (i.e., negative elasticity values) between IWC and HP. We also 
observe different “temperature thresholds” that might trigger these 
trade-offs. For MT and BC where the absolute amount of IWC is smaller 
than other parts of the basin, a 2 to 3 ◦C temperature increase seems to 
be the starting point of the IWC and HP trade-off. For ID where the 
absolute amount of IWC is among the largest in the basin, temperature 
increase needs to reach 5 ◦C for us to observe the trade-offs. These trade- 
offs are the results of the interaction between IWC, Irrmax, and precipi
tation described in Eq. (16) (Section 3.2). With a 10 % increase in pre
cipitation, Irrmax also increases due to increased streamflow but with a 

Fig. 7. Pareto Front depicting the trade-offs between percentage changes in irrigated water consumption (IWC) and hydropower generation (HP) under varied 
climate change scenarios. Different colors represent different temperature increases, while distinct symbols denote variations in precipitation changes. (For inter
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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smaller magnitude. When this happens, agents will assume more crops 
can become rain-fed, resulting in a slight decrease in their IWC de
cisions. When precipitation increase more than 10 %, more streamflow 
becomes available, and agents will increase their IWC. Therefore, the 

trade-offs disappear. The distinct “temperature thresholds” between the 
upstream states and the province may be due to the sensitivity of 
snowmelt changes caused by increasing temperature (both in terms of 
timing and volume), subsequently affecting water availability and Irrmax. 

Fig. 8. Climate response surfaces for elasticity on regional irrigated water consumption (IWC) and hydropower generation (HP). WA, OR, ID, MT and BC represent 
the States of Washington, Oregon, Idaho, and Montana, and British Columbia in Canada, respectively. The green polygon is the boundary of GCM projections to 
visualize the possible range of climate change. The smaller size of the colored grid indicates the average annual irrigated water consumption is lower than the 
baseline level. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 8a-2 to e-2 show the results of the growing season and Fig. 8a-3 
to e-3 show the results of the non-growing season. The trade-off patterns 
show up in different locations and different climate conditions. For the 
downstream states (WA and OR), a clear seasonal pattern can be 
observed. Trade-offs happen only under the extreme temperature in
crease condition (7 ◦C) and with a 10 % precipitation increase in the 
growing season, but in the non-growing season, trade-offs can happen 
when temperature increases by more than 2 ◦C. In the growing season, 
falling HP and increasing (or the same) IWC is the main reason for trade- 
offs. Conversely, in the non-growing season, the driving factors are 
reversed. For upstream states and the province, each part of the CRB 
seems to have its own pattern. In ID, we also observe the seasonal dif
ference in trade-offs, but the pattern is not linear. The opposite pattern 
shows up when temperature increases by 6 ◦C and precipitation in
creases by 10 %. The main reason for this result is the internal climate 
variability. We derived a higher average precipitation in the 6 ◦C sce
nario compared to the 5 ◦C and 7 ◦C scenarios in our resampling process. 
Consequently, this results in a greater average water availability in
crease, leading to a more substantial rise in IWC. Furthermore, the 
“temperature threshold” for trade-off patterns to be observable is 5 to 
6 ◦C which is higher than that in downstream states. In MT, most trade- 
offs occur in the non-growing season starting at 3 ◦C temperature in
crease. We do observe an anomaly under 3 ◦C temperature increase and 
10 % precipitation increase condition in the growing season. However, 
since the absolute amount of IWC is very small in MT, this result can be 
caused by the sensitivity of the modeling results or again the effect of 
internal climate variability. Finally, we do not observe a clear seasonal 
difference in trade-offs in BC. The “temperature threshold” of trade-offs 
starts at 2 ◦C temperature increase for both growing and non-growing 
seasons. However, since there are not many agricultural activities in 
this part of BC, the absolute amounts of these trade-offs are not severe. 

These results indicate that 1) balancing the timing of crop production 
and hydropower generation will become more challenging under 
climate change in different parts of CRB; 2) special attention should be 
given to the “temperature thresholds” of different regions when trade-off 
pattern starts to be observed; and 3) region-specific water management 
policy will be needed for upstream and downstream states to address 

these trade-offs under climate change. 

4.4. Multiple sectors result at the subbasin scale (IWC vs. Streamflow for 
fish) 

Climate change could also affect culturally and economically 
important aquatic species, such as Chinook salmon (Oncorhynchus 
tshawytscha) in the CRB (Columbia River Inter-Tribal Fish Commission, 
2013; Williams and Hardison, 2006). These species populations have 
been in decline due to degraded ecosystems caused by reduced snow
pack and altered rainfall and runoff pattern (in addition to damming and 
operation). The interpretation of treaty-guaranteed water rights in light 
of changing conditions will become a contentious and pressing issue as 
competition for water intensifies (Dalton et al., 2013). 

Our integrated model can provide some insights about the trade-offs 
between streamflow for fish and IWC under multiple climate change 
scenarios for different subbasins in the CRB. We choose two subbasins (i. 
e., agents) located on Yakama tribal ceded lands (Agent 7) and Umatilla 
tribal ceded lands (Agent 12) for demonstration purposes. We use Sea
sonal Flow Fraction (SFF, Stewart et al., 2005), which is defined as the 
ratio of the spring-summer (April-July) flow volume to the water year 
flow volume, to represent environmental flow requirements for 
ecosystem. The spring-summer period is crucial to the salmon life cycle 
(Independent Scientific Group, 2000), as water is required for juvenile 
and adult salmon habitat and migration. Fig. 9 is the heat map of climate 
response surface to show the effects of climate change on the average 
annual IWC elasticity of average annual SFF for these two agents. All 
other settings are similar to Figs. 6 and 8. 

Figs. 9-1 and 9-2 reveal that there is no trade-off between SFF and 
IWC for Agent 7 and Agent 12 under no precipitation change scenarios. 
Notably, Agent 12 shows higher positive elasticity values as temperature 
increases from 4 ◦C to 7 ◦C, indicating that a decrease in SFF will be more 
significantly impacted by a decrease in IWC. This might be due to the 
fact that the total average annual IWC in Agent 12 is much higher than 
Agent 7. Moreover, both Agent 7 and Agent 12 will experience a trade- 
off between IWC and SFF when precipitation increases by 10 % along
side temperature increments exceeding 5 ◦C. Particularly, Agent 12 will 

Fig. 9. Climate response surfaces for elasticity on ecosystem sector and food sector for Agent 7 and Agent 12. SFF represents the Season Flow Fraction and IWC 
represents Irrigated Water Consumption. The green polygon is the boundary of GCM projections to visualize the possible range of climate change. The smaller size of 
the colored grid indicates the average annual irrigated water consumption is lower than the baseline level. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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experience a trade-off when precipitation increases by 10 % combined 
with a temperature increase of 4 ◦C, as well as when precipitation in
creases by 20 % combined with a temperature increase of 7 ◦C. 

5. Discussion 

5.1. Modeling result implications for policy in CRT renegotiation 

The management of the transboundary FEW nexus in the CRB is 
partially guided by the Columbia River Treaty (CRT), established in 
1964 between Canada and the United States. The CRT regulates dam 
development and operation along the river, primarily for power gener
ation and flood control and the treaty assigns rights and obligations to 
federal agencies in both countries. However, when the CRT was initially 
established, it did not explicitly consider the rights and responsibilities 
of tribes and residents, nor did it address critical issues such as fishing, 
restoration, and agricultural water use. Currently, the U.S. and Canada 
are renegotiating the CRT, with a focus on improving ecosystems and 
minimizing adverse effects on tribal resources (Congressional Research 
Service, 2023). 

Our model delineates the interplay and trade-offs among multiple 
sectors across scales under differing climatic scenarios, with irrigated 
water consumption being pivotal. Gantla et al. (2015) indicated that 
people in the Pacific Northwest are generally aware of the higher risk of 
food shortages and crop failures due to climate change. Additionally, 
Zhang et al. (2021) found that residents in the CRB showed stronger 
support for policies related to food and water. This public awareness 
presents an opportunity for policymakers to advocate for water-saving 
technologies, potentially reducing irrigated water consumption and its 
associated trade-offs. Moreover, to preserve salmon habitats in the 
mainstream, increasing spring and summer flows via reservoir reoper
ation and the development of a joint program for fish passage to mitigate 
associated trade-offs is suggested (Congressional Research Service, 
2023). A similar recommendation has been made in the CRT renegoti
ation process by the U.S. Army Corps of Engineers and the Bonneville 
Power Administration. This could come through the expansion of 
agreements to further augment flows for spring and summer (with these 
flows coming from reduced fall and winter drafts in Canadian reservoirs) 
and the development of a joint program for fish passage (Congressional 
Research Service, 2023). 

5.2. Limitations and future work 

The proposed modeling framework has some limitations that need to 
be addressed in future studies. One of the limitations is that the current 
model assumes that agents’ behaviors follow the Bayesian inference on 
water availability and simple economic optimization for agriculture 
production, which may not adequately capture the decision-making 
mechanisms of all agents. For example, crop demands, and water- 
saving technologies, may also be part of the considerations. Addition
ally, the model does not explicitly consider direct interactions among 
agents, such as peer pressure, water rights and water markets (Du et al., 
2020). Many studies have shown the social norm effect is an essential 
factor influencing human behavior especially at the smaller spatial scale 
(Bicchieri and Muldoon, 2011; Cedeno-Mieles et al., 2020). Future 
research could conduct in-depth interviews or surveys with different 
farmers in different subbasins (agents) to advance our understanding in 
farmers’ empirical decision-making processes in specific locations and 
investigate how these farmers make decisions in the face of uncertainties 
in crop price, water resources fee and water availability. Another limi
tation of the model is that it does not account for the agents’ crop se
lection, double cropping, and crop area decisions. The model assumes 
that agents’ irrigated water consumption reflects these factors, but in 
reality, warming and an extension of the growing season may result in 
the adoption of slower-growing crop varieties and an increase in double- 
cropping. Therefore, future work could include a crop selection module 

in the ABM to better reflect the reality. In addition, the current model 
only considers irrigated water consumption and does not account for 
water consumption by other sectors (e.g., hydropower and municipal). 
To overcome this limitation, future research could enhance the current 
model by incorporating additional types of agents (e.g., hydropower, 
urban, and ecosystem), which could represent sectors such as reservoir 
operations, urban public water supply, and ecological water needs. This 
expanded framework with the direct and indirect interactions among 
these different types of agents would facilitate a more comprehensive 
and accurate future analysis of the FEW nexus under climate change. 
Finally, we only use CMIP5 scenarios in this study to inform future 
climate change likelihood. Given the flexibility of the Decision scaling 
method, when all CMIP6 downscaled data become available, they can 
also be superimposed on top of our climate response surface (e.g., 
Figs. 6, 8, and 9) to show the latest future climate change projection. 

6. Conclusion 

Growing energy and food demands, coupled with increasing un
certainties in the hydrologic cycle due to climate change, will challenge 
effective water resources management in the coming decades. To 
address this challenge, a better understanding of the co-evolution 
mechanism in coupled natural-human systems (CNHS) and its influ
ence on the food, energy, water (FEW) nexus under changing climate 
forcing and human decisions is critical. This study developed a novel 
modeling framework by integrating an agent-based model (ABM) into a 
large-scale hydrologic model for co-evolution analysis to address the 
interaction between human and natural systems. The proposed inte
grated ABM framework characterizes human decision-making processes 
on irrigation by considering heterogeneous initial expectations on water 
availability and updating those perceptions with recent experience using 
Bayesian inference. Different decay rate of memory and foresight 
regarding external constraints on the water availability are also 
conceptually included in the model. Subsequently, a comprehensive 
analysis that spans multiple sectors and across multiple scales was 
conducted by utilizing the outputs from the developed integrated 
modeling framework, which provide valuable insights for strategic 
planning and sustainable resource management under varying climatic 
conditions. The developed framework is applied in the Columbia River 
Basin for demonstration, but it can be easily applied to other basins. 

Calibration and validation results of the integrated model show that 
our methodology can potentially capture, at least partially, the historical 
complexities of human activities (irrigated water consumption) and 
natural dynamics (streamflow changes). The results of our scenario 
analyses indicate that under hotter and wetter climate conditions, the 
trade-off between irrigated water consumption, hydropower generation, 
and streamflow will become more pronounced at both the basin and 
regional levels. Specially, the trade-off is expected to increase under 
more extreme climate change scenarios, characterized by a temperature 
increase greater than 4 ◦C and an increase in precipitation of 10 % 
during the growing season. In addition, the trade-off is more sensitive to 
variations in temperature during the non-growing season with no pre
cipitation change. At the regional level, the findings suggest that it will 
be more challenging to balance the timing of crop production and hy
dropower generation under climate change impacts. Furthermore, it is 
crucial to identify the “temperature thresholds” characteristics of 
distinct regions, at which the trade-off patterns begin to emerge. Lastly, 
region-specific water management policies will be needed to effectively 
address the trade-offs arising from climate change for both upstream and 
downstream states. Further analysis utilizing more realistic modeling 
frameworks is still needed to better quantify the co-evolution in 
informing policymaking for future multi-sector and multi-level water 
resources governance applications in the CNHS. 
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